Cycling Mechanics

Dan Enz PT, LAT
Jenny Kempf MPT, CSCS
Epidemiology

• Approximately 85% of all recreational cyclist sustain an injury
• 60% of cycling injuries occur in the knee
 – Anterior knee pain
 – Patellar tendonitis
Epidemiology

• Overuse injuries most common, traumatic event second
 – Improper training
 – Improper bike fit

• Cycling is a repetitive activity
 – 1 hour = 5400 pedal revolutions
 – Can result in microtrauma or overuse injuries
 – Knee most common location or overuse injury
Causes

• Training error
• Bike fit
• Pedaling mechanics/Technique
• Muscular imbalances
Biomechanics of Pain

• Why is knee pain so prevalent in cyclists?

• Low level repetitive loading
• Bike fit
 – Bike anatomy
 – Rider anatomy
• Driving moments — muscle forces
• Non driving moments — varus/valgus,
 internal/external axial
Bicycle Related Injuries

• Non traumatic 85% of the time
• Common injury sites
 – Knee
 – Neck
 – Low back
 – Hands
 – Buttock
 – Perineum

Dettori, Norvell Sports medicine 2006
Bike fit

- Heel on the pedal
- Level pelvis
- Crank arm parallel to seat tube
- Knee should be straight
 - Anterior knee pain
 - Higher the seat
 - Lateral knee pain
 - Lower seat
Goals of the fit

• Efficiency
• Comfort
• Current issues
• Course, demands of race/event
• Individual differences
What you Should ask Yourself?

• How do I use the Biker’s body in front of me today?
 – “Fit the Bike to the Rider”
 – Use evaluation to define constraints of the rider
 – Apply the limits found with ROM, strength and flexibility for that days fit

• What needs to be altered to be able to seek the desired position?
 – “Fit the Rider to the Bike”
 – ID issues with ROM, Strength, Flexibility, technique that need to be addressed to reach the desired position
Bike Fit

- Tools needed
- Warm up 10 minutes
- Accommodate for structure
- Address Contact points
- Take measurements that are rider specific
- Address rider flaws
- If change is made must go through and remeasure
Bike Fit

• Contact points
 – Saddle
 • Height
 • Fore/Aft
 • Tilt
 – Pedals
 • Rotation
 • Fore/Aft
 • Wedge/Shim
 • Medial/lateral
 – Bars
 • Height
 • Width
 • Reach
Cleat Alignment

• Fore/Aft
 – Adjust on shoe, anterior on shoe=posterior

• Rotation
 – Match alignment orientation

• Width
 – Spacers
Saddle Height

- Pelvis observation
- Ankle observation
- Knee angle when pedal is furthest from hip joint (usually parallel with seat tube)
- 25-40 degrees
- Mountain vs. road
Saddle Fore/Aft

- Usually with anatomical landmarks (KOPS, knee over pedal spindle)
- Neutral = Tibial tuberosity
- Anterior = Fibular head
- Posterior = Patella
- Take rider, aero, course into account
Handle bar adjustment

• Frame size
• Stem length
• Some say level with saddle to up to 4 inches lower
• Trunk angle 25-45 degrees but quite variable
Posture considerations

• Pelvis Neutral
• Posterior tilt
 – Hard to get low
 – What does it do to hip power?
• Anterior pelvic tilt
 – Long and low

Take ind. Differences for bar drop and reach
Areo Bars

- Bar fore and aft
- Bar Tilt
- Bar Width
Areo Bars

• Fore/Aft
 – Shoulder perpendicular
 – Pads 2-4 inches distal to the elbow
 – Increase = Increase trunk activation
Aero Bars

- Bar width “stacking”
 - Wide
 - Easier breathing
 - Comfort
 - Stability and handling
 - Narrow
 - Decrease breathing ability
 - Compensated scapula
 - Increase neck strain
Aero Bar

- Tilt
 - Up
 - Improved aero
 - Increase elbow wt.
 - Hard to pull with hill climbing
 - Level/slight down
 - If down too much increase trunk strain
Road vs. Tri Bike

Image courtesy of Cervelo.com
On the bike exercise

- Need stable base
- Posture position
- Watch sway
- 1 arm bike
- 1 leg bike