Skip to Content
UW Health SMPH
American Family Children's Hospital
DONATE Donate
SHARE TEXT

Adult Non-Hodgkin Lymphoma Treatment (PDQ®): Treatment - Health Professional Information [NCI]

This information is produced and provided by the National Cancer Institute (NCI). The information in this topic may have changed since it was written. For the most current information, contact the National Cancer Institute via the Internet web site at http://cancer.gov or call 1-800-4-CANCER.

Adult Non-Hodgkin Lymphoma Treatment

General Information About Adult Non-Hodgkin Lymphoma (NHL)

The NHLs are a heterogeneous group of lymphoproliferative malignancies with differing patterns of behavior and responses to treatment.[1]

Like Hodgkin lymphoma, NHL usually originates in lymphoid tissues and can spread to other organs. NHL, however, is much less predictable than Hodgkin lymphoma and has a far greater predilection to disseminate to extranodal sites. The prognosis depends on the histologic type, stage, and treatment.

Incidence and Mortality

Estimated new cases and deaths from NHL in the United States in 2013:[2]

  • New cases: 69,740.
  • Deaths: 19,020.

Anatomy

NHL usually originates in lymphoid tissues.

Lymph system; drawing shows the lymph vessels and lymph organs including the lymph nodes, tonsils, thymus, spleen, and bone marrow. One inset shows the inside structure of a lymph node and the attached lymph vessels with arrows showing how the lymph (clear fluid) moves into and out of the lymph node. Another inset shows a close up of bone marrow with blood cells.
Anatomy of the lymph system.

Prognosis and Survival

The NHLs can be divided into two prognostic groups: the indolent lymphomas and the aggressive lymphomas.

Indolent NHL types have a relatively good prognosis with a median survival as long as 10 to 20 years, but they usually are not curable in advanced clinical stages. Early-stage (stage I and stage II) indolent NHL can be effectively treated with radiation therapy alone. Most of the indolent types are nodular (or follicular) in morphology.

The aggressive type of NHL has a shorter natural history, but a significant number of these patients can be cured with intensive combination chemotherapy regimens.

In general, with modern treatment of patients with NHL, overall survival at 5 years is over 60%. Of patients with aggressive NHL, more than 50% can be cured. The vast majority of relapses occur in the first 2 years after therapy. The risk of late relapse is higher in patients who manifest both indolent and aggressive histologies.[3]

While indolent NHL is responsive to immunotherapy, radiation therapy, and chemotherapy, a continuous rate of relapse is usually seen in advanced stages. Patients, however, can often be re-treated with considerable success as long as the disease histology remains low grade. Patients who present with or convert to aggressive forms of NHL may have sustained complete remissions with combination chemotherapy regimens or aggressive consolidation with marrow or stem cell support.[4,5]

References:

1. Shankland KR, Armitage JO, Hancock BW: Non-Hodgkin lymphoma. Lancet 380 (9844): 848-57, 2012.
2. American Cancer Society.: Cancer Facts and Figures 2013. Atlanta, Ga: American Cancer Society, 2013. Available online. Last accessed September 5, 2013.
3. Cabanillas F, Velasquez WS, Hagemeister FB, et al.: Clinical, biologic, and histologic features of late relapses in diffuse large cell lymphoma. Blood 79 (4): 1024-8, 1992.
4. Bastion Y, Sebban C, Berger F, et al.: Incidence, predictive factors, and outcome of lymphoma transformation in follicular lymphoma patients. J Clin Oncol 15 (4): 1587-94, 1997.
5. Yuen AR, Kamel OW, Halpern J, et al.: Long-term survival after histologic transformation of low-grade follicular lymphoma. J Clin Oncol 13 (7): 1726-33, 1995.

Late Effects of Treatment for Adult NHL

Late effects of treatment for non-Hodgkin lymphoma (NHL) have been observed. Pelvic radiation therapy and large cumulative doses of cyclophosphamide have been associated with a high risk of permanent sterility.[1] For as many as three decades after diagnosis, patients are at a significantly elevated risk for second primary cancers, especially the following:[1,2,3]

  • Lung cancer.
  • Brain cancer.
  • Kidney cancer.
  • Bladder cancer.
  • Melanoma.
  • Hodgkin lymphoma.
  • Acute nonlymphocytic leukemia.

Left ventricular dysfunction was a significant late effect in long-term survivors of high-grade NHL who received more than 200 mg/m² of doxorubicin.[4,5]

Myelodysplastic syndrome and acute myelogenous leukemia are late complications of myeloablative therapy with autologous bone marrow or peripheral blood stem cell support, as well as conventional chemotherapy-containing alkylating agents.[1,6,7,8,9,10,11,12,13] Most of these patients show clonal hematopoiesis even before the transplantation, suggesting that the hematologic injury usually occurs during induction or reinduction chemotherapy.[8,14,15] With a median 10-year follow-up after autologous bone marrow transplantation (BMT) with conditioning using cyclophosphamide and total-body radiation therapy, in a series of 605 patients, the incidence of a second malignancy was 21%, and 10% of those were solid tumors.[16] Successful pregnancies with children born free of congenital abnormalities have been reported in young women after autologous BMT.[17]

References:

1. Mudie NY, Swerdlow AJ, Higgins CD, et al.: Risk of second malignancy after non-Hodgkin's lymphoma: a British Cohort Study. J Clin Oncol 24 (10): 1568-74, 2006.
2. Travis LB, Curtis RE, Glimelius B, et al.: Second cancers among long-term survivors of non-Hodgkin's lymphoma. J Natl Cancer Inst 85 (23): 1932-7, 1993.
3. Hemminki K, Lenner P, Sundquist J, et al.: Risk of subsequent solid tumors after non-Hodgkin's lymphoma: effect of diagnostic age and time since diagnosis. J Clin Oncol 26 (11): 1850-7, 2008.
4. Haddy TB, Adde MA, McCalla J, et al.: Late effects in long-term survivors of high-grade non-Hodgkin's lymphomas. J Clin Oncol 16 (6): 2070-9, 1998.
5. Moser EC, Noordijk EM, van Leeuwen FE, et al.: Long-term risk of cardiovascular disease after treatment for aggressive non-Hodgkin lymphoma. Blood 107 (7): 2912-9, 2006.
6. Darrington DL, Vose JM, Anderson JR, et al.: Incidence and characterization of secondary myelodysplastic syndrome and acute myelogenous leukemia following high-dose chemoradiotherapy and autologous stem-cell transplantation for lymphoid malignancies. J Clin Oncol 12 (12): 2527-34, 1994.
7. Stone RM, Neuberg D, Soiffer R, et al.: Myelodysplastic syndrome as a late complication following autologous bone marrow transplantation for non-Hodgkin's lymphoma. J Clin Oncol 12 (12): 2535-42, 1994.
8. Armitage JO, Carbone PP, Connors JM, et al.: Treatment-related myelodysplasia and acute leukemia in non-Hodgkin's lymphoma patients. J Clin Oncol 21 (5): 897-906, 2003.
9. André M, Mounier N, Leleu X, et al.: Second cancers and late toxicities after treatment of aggressive non-Hodgkin lymphoma with the ACVBP regimen: a GELA cohort study on 2837 patients. Blood 103 (4): 1222-8, 2004.
10. Oddou S, Vey N, Viens P, et al.: Second neoplasms following high-dose chemotherapy and autologous stem cell transplantation for malignant lymphomas: a report of six cases in a cohort of 171 patients from a single institution. Leuk Lymphoma 31 (1-2): 187-94, 1998.
11. Lenz G, Dreyling M, Schiegnitz E, et al.: Moderate increase of secondary hematologic malignancies after myeloablative radiochemotherapy and autologous stem-cell transplantation in patients with indolent lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group. J Clin Oncol 22 (24): 4926-33, 2004.
12. McLaughlin P, Estey E, Glassman A, et al.: Myelodysplasia and acute myeloid leukemia following therapy for indolent lymphoma with fludarabine, mitoxantrone, and dexamethasone (FND) plus rituximab and interferon alpha. Blood 105 (12): 4573-5, 2005.
13. Morton LM, Curtis RE, Linet MS, et al.: Second malignancy risks after non-Hodgkin's lymphoma and chronic lymphocytic leukemia: differences by lymphoma subtype. J Clin Oncol 28 (33): 4935-44, 2010.
14. Mach-Pascual S, Legare RD, Lu D, et al.: Predictive value of clonality assays in patients with non-Hodgkin's lymphoma undergoing autologous bone marrow transplant: a single institution study. Blood 91 (12): 4496-503, 1998.
15. Lillington DM, Micallef IN, Carpenter E, et al.: Detection of chromosome abnormalities pre-high-dose treatment in patients developing therapy-related myelodysplasia and secondary acute myelogenous leukemia after treatment for non-Hodgkin's lymphoma. J Clin Oncol 19 (9): 2472-81, 2001.
16. Brown JR, Yeckes H, Friedberg JW, et al.: Increasing incidence of late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin's lymphoma. J Clin Oncol 23 (10): 2208-14, 2005.
17. Jackson GH, Wood A, Taylor PR, et al.: Early high dose chemotherapy intensification with autologous bone marrow transplantation in lymphoma associated with retention of fertility and normal pregnancies in females. Scotland and Newcastle Lymphoma Group, UK. Leuk Lymphoma 28 (1-2): 127-32, 1997.

Cellular Classification of Adult NHL

A pathologist should be consulted prior to a biopsy because some studies require special preparation of tissue (e.g., frozen tissue). Knowledge of cell surface markers and immunoglobulin and T-cell receptor gene rearrangements may help with diagnostic and therapeutic decisions. The clonal excess of light-chain immunoglobulin may differentiate malignant from reactive cells. Since the prognosis and the approach to treatment are influenced by histopathology, outside biopsy specimens should be carefully reviewed by a hematopathologist who is experienced in diagnosing lymphomas. Although lymph node biopsies are recommended whenever possible, sometimes immunophenotypic data are sufficient to allow diagnosis of lymphoma when fine-needle aspiration cytology is preferred.[1,2]

Historical Classification Systems

Historically, uniform treatment of patients with non-Hodgkin lymphoma (NHL) has been hampered by the lack of a uniform classification system. In 1982, results of a consensus study were published as the Working Formulation.[3] The Working Formulation combined results from six major classification systems into one classification. This allowed comparison of studies from different institutions and countries. The Rappaport classification, which also follows, is no longer in common use.

Table 1. Historical Classification Systems for NHL

Working Formulation[3] Rappaport Classification
Low grade  
A. Small lymphocytic, consistent with chronic lymphocytic leukemia Diffuse lymphocytic, well-differentiated
B. Follicular, predominantly small-cleaved cell Nodular lymphocytic, poorly differentiated
C. Follicular, mixed small-cleaved, and large cell Nodular mixed, lymphocytic, and histiocytic
Intermediate grade  
D. Follicular, predominantly large cell Nodular histiocytic
E. Diffuse, small-cleaved cell Diffuse lymphocytic, poorly differentiated
F. Diffuse mixed, small and large cell Diffuse mixed, lymphocytic, and histiocytic
G. Diffuse, large cell, cleaved, or noncleaved cell Diffuse histiocytic
High grade  
H. Immunoblastic, large cell Diffuse histiocytic
I. Lymphoblastic, convoluted, or nonconvoluted cell Diffuse lymphoblastic
J. Small noncleaved-cell, Burkitt, or non-Burkitt Diffuse undifferentiated Burkitt or non-Burkitt

Current Classification Systems

As the understanding of NHL has improved and as the histopathologic diagnosis of NHL has become more sophisticated with the use of immunologic and genetic techniques, a number of new pathologic entities have been described.[4] In addition, the understanding and treatment of many of the previously described pathologic subtypes have changed. As a result, the Working Formulation has become outdated and less useful to clinicians and pathologists. Thus, European and American pathologists have proposed a new classification, the Revised European American Lymphoma (REAL) classification.[5,6,7,8] Since 1995, members of the European and American Hematopathology societies have been collaborating on a new World Health Organization (WHO) classification, which represents an updated version of the REAL system.[9,10]

The WHO modification of the REAL classification recognizes three major categories of lymphoid malignancies based on morphology and cell lineage: B-cell neoplasms, T-cell/natural killer (NK)-cell neoplasms, and Hodgkin lymphoma. Both lymphomas and lymphoid leukemias are included in this classification because both solid and circulating phases are present in many lymphoid neoplasms and distinction between them is artificial. For example, B-cell chronic lymphocytic leukemia and B-cell small lymphocytic lymphoma are simply different manifestations of the same neoplasm, as are lymphoblastic lymphomas and acute lymphocytic leukemias. Within the B-cell and T-cell categories, two subdivisions are recognized: precursor neoplasms, which correspond to the earliest stages of differentiation, and more mature differentiated neoplasms.[9,10]

Updated REAL/WHO classification

B-cell neoplasms

1.Precursor B-cell neoplasm: precursor B-acute lymphoblastic leukemia/lymphoblastic lymphoma (LBL).
2.Peripheral B-cell neoplasms.
1.B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma.
2.B-cell prolymphocytic leukemia.
3.Lymphoplasmacytic lymphoma/immunocytoma.
4.Mantle cell lymphoma.
5.Follicular lymphoma.
6.Extranodal marginal zone B-cell lymphoma of mucosa-associated lymphatic tissue (MALT) type.
7.Nodal marginal zone B-cell lymphoma (± monocytoid B-cells).
8.Splenic marginal zone lymphoma (± villous lymphocytes).
9.Hairy cell leukemia.
10.Plasmacytoma/plasma cell myeloma.
11.Diffuse large B-cell lymphoma.
12.Burkitt lymphoma.

T-cell and putative NK-cell neoplasms

1.Precursor T-cell neoplasm: precursor T-acute lymphoblastic leukemia/LBL.
2.Peripheral T-cell and NK-cell neoplasms.
1.T-cell chronic lymphocytic leukemia/prolymphocytic leukemia.
2.T-cell granular lymphocytic leukemia.
3.Mycosis fungoides/Sézary syndrome.
4.Peripheral T-cell lymphoma, not otherwise characterized.
5.Hepatosplenic gamma/delta T-cell lymphoma.
6.Subcutaneous panniculitis-like T-cell lymphoma.
7.Angioimmunoblastic T-cell lymphoma.
8.Extranodal T-/NK-cell lymphoma, nasal type.
9.Enteropathy-type intestinal T-cell lymphoma.
10.Adult T-cell lymphoma/leukemia (human T-lymphotrophic virus [HTLV] 1+).
11.Anaplastic large cell lymphoma, primary systemic type.
12.Anaplastic large cell lymphoma, primary cutaneous type.
13.Aggressive NK-cell leukemia.

Hodgkin lymphoma

1.Nodular lymphocyte-predominant Hodgkin lymphoma.
2.Classical Hodgkin lymphoma.
1.Nodular sclerosis Hodgkin lymphoma.
2.Lymphocyte-rich classical Hodgkin lymphoma.
3.Mixed-cellularity Hodgkin lymphoma.
4.Lymphocyte-depleted Hodgkin lymphoma.

The REAL classification encompasses all the lymphoproliferative neoplasms. Refer to the following PDQ summaries for more information:

  • Adult Acute Lymphoblastic Leukemia Treatment
  • Adult Hodgkin Lymphoma Treatment
  • AIDS-Related Lymphoma Treatment
  • Chronic Lymphocytic Leukemia Treatment
  • Hairy Cell Leukemia Treatment
  • Mycosis Fungoides and the Sézary Syndrome Treatment
  • Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment
  • Primary CNS Lymphoma Treatment

PDQ modification of REAL classification of lymphoproliferative diseases

1.Plasma cell disorders. (Refer to the PDQ summary on Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment for more information.)
1.Bone.
2. Extramedullary.
1.Monoclonal gammopathy of undetermined significance.
2.Plasmacytoma.
3.Multiple myeloma.
4.Amyloidosis.
2.Hodgkin lymphoma. (Refer to the PDQ summary on Adult Hodgkin Lymphoma Treatment for more information.)
1.Nodular sclerosis Hodgkin lymphoma.
2.Lymphocyte-rich classical Hodgkin lymphoma.
3.Mixed-cellularity Hodgkin lymphoma.
4.Lymphocyte-depleted Hodgkin lymphoma.
3.Indolent lymphoma/leukemia.
1.Follicular lymphoma (follicular small-cleaved cell [grade 1], follicular mixed small-cleaved, and large cell [grade 2], and diffuse, small-cleaved cell).
2.Chronic lymphocytic leukemia/small lymphocytic lymphoma. (Refer to the PDQ summary on Chronic Lymphocytic Leukemia Treatment for more information.)
3.Lymphoplasmacytic lymphoma (Waldenström macroglobulinemia).
4.Extranodal marginal zone B-cell lymphoma (MALT lymphoma).
5.Nodal marginal zone B-cell lymphoma (monocytoid B-cell lymphoma).
6.Splenic marginal zone lymphoma (splenic lymphoma with villous lymphocytes).
7.Hairy cell leukemia. (Refer to the PDQ summary on Hairy Cell Leukemia Treatment for more information.)
8.Mycosis fungoides/Sézary syndrome. (Refer to the PDQ summary on Mycosis Fungoides/Sézary Syndrome Treatment for more information.)
9.T-cell granular lymphocytic leukemia. (Refer to the PDQ summary on Chronic Lymphocytic Leukemia Treatment for more information.)
10.Primary cutaneous anaplastic large cell lymphoma/lymphomatoid papulosis (CD30+).
11.Nodular lymphocyte–predominant Hodgkin lymphoma. (Refer to the PDQ summary on Adult Hodgkin Lymphoma Treatment for more information.)
4.Aggressive lymphoma/leukemia.
1.Diffuse large cell lymphoma (includes diffuse mixed-cell, diffuse large cell, immunoblastic, and T-cell rich large B-cell lymphoma).

Distinguish:

1.Mediastinal large B-cell lymphoma.
2.Follicular large cell lymphoma (grade 3).
3.Anaplastic large cell lymphoma (CD30+).
4.Extranodal NK-/T-cell lymphoma, nasal type/aggressive NK-cell leukemia/blastic NK-cell lymphoma.
5.Lymphomatoid granulomatosis (angiocentric pulmonary B-cell lymphoma).
6.Angioimmunoblastic T-cell lymphoma.
7. Peripheral T-cell lymphoma, unspecified.
  • Subcutaneous panniculitis-like T-cell lymphoma.
  • Hepatosplenic T-cell lymphoma.
8.Enteropathy-type T-cell lymphoma.
9.Intravascular large B-cell lymphoma.
2.Burkitt lymphoma/Burkitt cell leukemia/Burkitt-like lymphoma.
3.Precursor B-cell or T-cell lymphoblastic lymphoma/leukemia. (Refer to the PDQ summary on Adult Acute Lymphoblastic Leukemia Treatment for more information.)
4.Primary central nervous system (CNS) lymphoma. (Refer to the PDQ summary on Primary CNS Lymphoma Treatment for more information.)
5.Adult T-cell leukemia/lymphoma (HTLV 1+).
6.Mantle cell lymphoma.
7.Polymorphic posttransplantation lymphoproliferative disorder.
8.AIDS-related lymphoma. (Refer to the PDQ summary on AIDS-Related Lymphoma Treatment for more information.)
9.True histiocytic lymphoma.
10.Primary effusion lymphoma.
11.B-cell or T-cell prolymphocytic leukemia. (Refer to the PDQ summary on Chronic Lymphocytic Leukemia Treatment for more information.)

References:

1. Zeppa P, Marino G, Troncone G, et al.: Fine-needle cytology and flow cytometry immunophenotyping and subclassification of non-Hodgkin lymphoma: a critical review of 307 cases with technical suggestions. Cancer 102 (1): 55-65, 2004.
2. Young NA, Al-Saleem T: Diagnosis of lymphoma by fine-needle aspiration cytology using the revised European-American classification of lymphoid neoplasms. Cancer 87 (6): 325-45, 1999.
3. National Cancer Institute sponsored study of classifications of non-Hodgkin's lymphomas: summary and description of a working formulation for clinical usage. The Non-Hodgkin's Lymphoma Pathologic Classification Project. Cancer 49 (10): 2112-35, 1982.
4. Pugh WC: Is the working formulation adequate for the classification of the low grade lymphomas? Leuk Lymphoma 10(Suppl): 1-8, 1993.
5. Harris NL, Jaffe ES, Stein H, et al.: A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84 (5): 1361-92, 1994.
6. Pittaluga S, Bijnens L, Teodorovic I, et al.: Clinical analysis of 670 cases in two trials of the European Organization for the Research and Treatment of Cancer Lymphoma Cooperative Group subtyped according to the Revised European-American Classification of Lymphoid Neoplasms: a comparison with the Working Formulation. Blood 87 (10): 4358-67, 1996.
7. Armitage JO, Weisenburger DD: New approach to classifying non-Hodgkin's lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin's Lymphoma Classification Project. J Clin Oncol 16 (8): 2780-95, 1998.
8. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. The Non-Hodgkin's Lymphoma Classification Project. Blood 89 (11): 3909-18, 1997.
9. Pileri SA, Milani M, Fraternali-Orcioni G, et al.: From the R.E.A.L. Classification to the upcoming WHO scheme: a step toward universal categorization of lymphoma entities? Ann Oncol 9 (6): 607-12, 1998.
10. Society for Hematopathology Program.: Society for Hematopathology Program. Am J Surg Pathol 21(1): 114-121, 1997.

Indolent NHL

Indolent non-Hodgkin lymphoma (NHL) includes the following subtypes:

  • Follicular lymphoma.
  • Lymphoplasmacytic lymphoma (Waldenström macroglobulinemia).
  • Marginal zone lymphoma.
  • Splenic marginal zone lymphoma.
  • Primary cutaneous anaplastic large cell lymphoma.

Follicular Lymphoma

Follicular lymphoma comprises 20% of all NHLs and as many as 70% of the indolent lymphomas reported in American and European clinical trials.[1,2,3] Most patients with follicular lymphoma are age 50 years and older and present with widespread disease at diagnosis. Nodal involvement is most common and is often accompanied by splenic and bone marrow disease. Rearrangement of the bcl-2 gene is present in more than 90% of patients with follicular lymphoma; overexpression of the bcl-2 protein is associated with the inability to eradicate the lymphoma by inhibiting apoptosis.[4]

Prognosis

Despite the advanced stage, the median survival ranges from 8 to 15 years, leading to the designation of being indolent.[5,6,7] Patients with advanced-stage follicular lymphoma are not cured with current therapeutic options.[8] The rate of relapse is fairly consistent over time, even in patients who have achieved complete responses to treatment.[9] Watchful waiting, i.e., the deferring of treatment until the patient becomes symptomatic, is an option for patients with advanced-stage follicular lymphoma.[10] An international index for follicular lymphoma (i.e., the Follicular Lymphoma International Prognostic Index [FLIPI]) [11,12,13] identified five significant risk factors prognostic of overall survival (OS):

1.Age (≤60 years vs. >60 years).
2.Serum lactate dehydrogenase (LDH) (normal vs. elevated).
3.Stage (stage I or stage II vs. stage III or stage IV).
4.Hemoglobin level (≥120 g/L vs. <120 g/L).
5.Number of nodal areas (≤4 vs. >4).

Patients with none or one risk factor have an 85% 10-year survival rate, while three or more risk factors confer a 40% 10-year survival rate.[11] As a revised FLIPI, an elevated beta-2-microglobulin and lymph node size of more than 6 cm are proposed prognostic factors instead of serum LDH and the number of nodal areas.[14] Gene expression profiles of tumor biopsy specimens suggest that follicular lymphoma that is surrounded by infiltrating T-lymphocytes has a much longer median survival (13.6 years) than follicular lymphoma that is surrounded by dendritic and monocytic cells (3.9 years) (P < .001).[15]

Follicular, small-cleaved cell lymphoma and follicular mixed small-cleaved and large cell lymphoma do not have reproducibly different disease-free survival or OS.

Therapeutic approaches

Therapeutic options include watchful waiting; rituximab, an anti-CD20 monoclonal antibody, alone or with purine nucleoside analogs; oral alkylating agents; and combination chemotherapy.[16] Radiolabeled monoclonal antibodies, vaccines, and autologous or allogeneic bone marrow or peripheral stem cell transplantation are also under clinical evaluation.[16,17] Currently, no randomized trials have mature results to guide clinicians about the initial choice of rituximab, nucleoside analogs, alkylating agents, combination chemotherapy, radiolabeled monoclonal antibodies, or combinations of these options. On a comparative basis, it is difficult to prove benefit when relapsing disease is followed with watchful waiting, or when the median survival is more than 10 years. Follicular lymphoma in situ and primary follicular lymphoma of the duodenum are particularly indolent variants that rarely progress and rarely require therapy.[18,19] A so-called pediatric-type nodal follicular lymphoma has indolent behavior and rarely recurs; adult patients with this histologic variant are characterized by a lack of bcl-2 rearrangement in conjunction with a Ki-67 proliferation index greater than 30% and a localized stage I presentation.[20]

Patients with indolent lymphoma may experience a relapse with a more aggressive histology. If the clinical pattern of relapse suggests that the disease is behaving in a more aggressive manner, a biopsy should be performed. Documentation of conversion to a more aggressive histology requires an appropriate change to a therapy applicable to that histologic type.[21] Rapid growth or discordant growth between various disease sites may indicate a histologic conversion. The risk of histologic transformation was 30% by 10 years in a retrospective review of 325 patients from diagnosis between 1972 and 1999.[22] In this series, high-risk factors for subsequent histologic transformation were advanced stage, high-risk FLIPI, and expectant management. The 5-year OS rate was more than 50% for 172 patients who had biopsy-proven, aggressive-histology transformation in a multicenter cohort study employing rituximab plus anthracycline or platinum-based chemotherapy, or similar therapy followed by autologous or allogeneic stem cell transplantation.[23,24]

Lymphoplasmacytic Lymphoma (Waldenström Macroglobulinemia)

Lymphoplasmacytic lymphoma is usually associated with a monoclonal serum paraprotein of immunoglobulin M (IgM) type (Waldenström macroglobulinemia).[25,26,27] Most patients have bone marrow, lymph node, and splenic involvement, and some patients may develop hyperviscosity syndrome. Other lymphomas may also be associated with serum paraproteins.

Asymptomatic patients can be monitored for evidence of disease progression without immediate need for chemotherapy.[10,28,29]

Prognostic factors associated with symptoms requiring therapy include the following:

  • Age 70 or older.
  • Beta-2-microglobulin of 3 mg/dL or more.
  • Increased serum LDH.[28]

Therapeutic approaches

The management of lymphoplasmacytic lymphoma is similar to that of other low-grade lymphomas, especially diffuse, small lymphocytic lymphoma/chronic lymphocytic leukemia.[26,27,28,30,31,32] If the viscosity relative to water is greater than four, the patient may have manifestations of hyperviscosity. Plasmapheresis is useful for temporary, acute symptoms (such as retinopathy, congestive heart failure, and central nervous system dysfunction) but should be combined with chemotherapy for prolonged control of the disease. Symptomatic patients with a serum viscosity of not more than four are usually started directly on chemotherapy. Therapy may be required to correct hemolytic anemia in patients with chronic cold agglutinin disease; rituximab, cyclophosphamide, and steroids are often employed.[29] Occasionally, a heated room is required for patients whose cold agglutinins become activated by even minor chilling.

First-line regimens include rituximab, the nucleoside analogs, and alkylating agents, either as single agents or as part of combination chemotherapy.[33,34,35,36] Rituximab shows 60% to 80% response rates in previously untreated patients, but close monitoring of the serum IgM is required because of a sudden rise in this paraprotein at the start of therapy.[33,37,38][Level of evidence: 3iiiDiv] The rise of IgM after rituximab can be avoided with the concomitant use of an alkylating agent such as cyclophosphamide or the proteosome inhibitor bortezomib.[29,39] The nucleoside analogs 2-chlorodeoxyadenosine and fludarabine have shown similar response rates for previously untreated patients with lymphoplasmacytic lymphoma.[36,40,41][Level of evidence: 3iiiDiv] Single-agent alkylators, bortezomib, and combination chemotherapy with or without rituximab also show similar response rates.[36,39,42,43,44][Level of evidence: 3iiiDiv] Currently, no randomized trials guide clinicians about the initial choice of rituximab, nucleoside analogs, alkylating agents, combination chemotherapy, or combinations of these options.[26,27,33] A combination of bortezomib, dexamethasone, and rituximab has been proposed for its high response rate, rapidity of action, and avoidance of an IgM rebound.[45]

Interferon-alpha also shows activity in this disease, in contrast to poor responses in patients with multiple myeloma.[46] Myeloablative therapy with autologous or allogeneic hematopoietic stem cell support is under clinical evaluation.[47,48,49,50] Candidates for this approach should avoid long-term use of alkylating agents or purine nucleoside analogs, which can deplete hematopoietic stem cells or predispose patients to myelodysplasia or acute leukemia.[33,51] After relapse from alkylating-agent therapy, 92 patients with lymphoplasmacytic lymphoma were randomly assigned to either fludarabine or cyclophosphamide, doxorubicin, and prednisone. Although relapse-free survival favored fludarabine (median duration of 19 months vs. 3 months, P < .01), no difference was observed in OS.[52][Level of evidence: 1iiDii] Among patients with concomitant hepatitis C virus (HCV) infection, some will attain a complete or partial remission after loss of detectable HCV RNA with treatment using interferon-alpha with or without ribavirin.[53][Level of evidence: 3iiiDiv]

Marginal Zone Lymphoma

Marginal zone lymphomas were previously included among the diffuse, small lymphocytic lymphomas. When marginal zone lymphomas involve the nodes, they are called monocytoid B-cell lymphomas or nodal marginal zone B-cell lymphomas, and when they involve extranodal sites (e.g., gastrointestinal tract, thyroid, lung, breast, orbit, and skin), they are called mucosa-associated lymphatic tissue (MALT) lymphomas.[54,55,56,57,58,59,60,61,62]

Gastric MALT

Many patients have a history of autoimmune disease, such as Hashimoto thyroiditis or Sjögren syndrome, or of Helicobacter gastritis. Most patients present with stage I or stage II extranodal disease, which is most often in the stomach. Treatment of Helicobacter pylori infection may resolve most cases of localized gastric involvement.[63,64] After standard antibiotic regimens, 50% of patients show resolution of gastric MALT by endoscopy after 3 months. Other patients may show resolution after 12 to 18 months of observation. Of the patients who attain complete remission, 30% demonstrate monoclonality by immunoglobulin heavy chain rearrangement on stomach biopsies with a 5-year median follow-up.[65] The clinical implication of this finding is unknown. Translocation t(11;18) in patients with gastric MALT predicts for poor response to antibiotic therapy, for H. pylori –negative testing, and for poor response to oral alkylator chemotherapy.[66,67,68] Stable asymptomatic patients with persistently positive biopsies have been successfully followed on a watchful waiting approach until disease progression.[64] Patients who progress are treated with radiation therapy,[69,70,71,72] rituximab,[73] surgery (total gastrectomy or partial gastrectomy plus radiation therapy),[74] chemotherapy,[60] or combined–modality therapy.[75] The use of endoscopic ultrasonography may help clinicians to follow responses in these patients.[76] Four case series (encompassing more than 100 patients with stage IE or IIE diffuse, large, B-cell lymphoma with or without associated MALT (but H. pylori -positive) reported durable complete remissions in more than 50% of the patients after treatment of H. pylori.[77,78,79,80]

Extragastric MALT

Localized involvement of other sites can be treated with radiation or surgery.[70,71,72,81,82,83] Patients with extragastric MALT lymphoma have a higher relapse rate than patients with gastric MALT lymphoma in some series, with relapses many years and even decades later.[84] Many of these recurrences involve different MALT sites than the original location.[85] When disseminated to lymph nodes, bone marrow, or blood, this entity behaves like other low-grade lymphomas.[61,86] A prospective, randomized trial of 252 patients with nongastric, extranodal MALT compared chlorambucil with rituximab plus chlorambucil.[87] With a median follow-up of 62 months, the event-free survival was better for the rituximab arm (68% vs. 50%, P = .002), however, the 5-year OS was 89% in both arms.[87][Level of evidence: 1iiDi] This trial was extended with a third arm using rituximab alone, the results of which are not yet available. For patients with ocular adnexal MALT, antibiotic therapy using doxycycline targeting Chlamydia psittaci resulted in durable remissions for half of the patients in a small series of 27 patients.[88][Level of evidence: 3iiiDiv] Large B-cell lymphomas of MALT sites are classified and treated as diffuse large cell lymphomas.[89]

Monocytoid B cell lymphoma (Nodal marginal zone lymphoma)

Patients with nodal marginal zone lymphoma (monocytoid B-cell lymphoma) are treated with the same paradigm of watchful waiting or therapies as described for follicular lymphoma. Among patients with concomitant HCV infection, the majority attain a complete or partial remission after loss of detectable HCV RNA with treatment using interferon-alpha with or without ribavirin.[53][Level of evidence: 3iiiDiv]

Mediterranean abdominal lymphoma

The disease variously known as Mediterranean abdominal lymphoma, heavy–chain disease, or immunoproliferative small intestinal disease (IPSID), which occurs in young adults in eastern Mediterranean countries, is another version of MALT lymphoma, which responds to antibiotics in its early stages.[90]Campylobacter jejuni has been identified as one of the bacterial species associated with IPSID, and antibiotic therapy may result in remission of the disease.[91]

Splenic marginal zone lymphoma

Splenic marginal zone lymphoma is an indolent lymphoma that is marked by massive splenomegaly and peripheral blood and bone marrow involvement, usually without adenopathy.[92,93,94] This type of lymphoma is otherwise known as splenic lymphoma with villous lymphocytes. Splenectomy may result in prolonged remission.[62,95]

Management is similar to that of other low-grade lymphomas and usually involves rituximab alone or rituximab in combination with purine analogs or alkylating agent chemotherapy.[96] Splenic marginal zone lymphoma responds less well to chemotherapy, which would ordinarily be effective for chronic lymphocytic leukemia.[93,94,96] Among small numbers of patients with splenic marginal zone lymphoma (splenic lymphoma with villous lymphocytes) and infection with HCV, the majority attained a complete or partial remission after loss of detectable HCV RNA with treatment using interferon-alpha with or without ribavirin.[53,97]; [98][Level of evidence: 3iiiDiv] In contrast, no responses to interferon were seen in six HCV-negative patients.

Primary Cutaneous Anaplastic Large Cell Lymphoma

Primary cutaneous anaplastic large cell lymphoma presents in the skin only with no pre-existing lymphoproliferative disease and no extracutaneous sites of involvement.[99,100,101] Patients with this type of lymphoma encompass a spectrum ranging from clinically benign lymphomatoid papulosis, marked by localized nodules that may regress spontaneously, to a progressive and systemic disease requiring aggressive doxorubicin-based combination chemotherapy. This spectrum has been called the primary cutaneous CD30-positive T-cell lymphoproliferative disorder.

Patients with localized disease usually undergo radiation therapy. With more disseminated involvement, watchful waiting or doxorubicin-based combination chemotherapy is applied.[99,100,101]

(Refer to the PDQ summaries on Chronic Lymphocytic Leukemia Treatment; Mycosis Fungoides/Sézary Syndrome Treatment; Hairy Cell Leukemia Treatment; and Adult Hodgkin Lymphoma Treatment for more information.)

References:

1. Armitage JO, Weisenburger DD: New approach to classifying non-Hodgkin's lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin's Lymphoma Classification Project. J Clin Oncol 16 (8): 2780-95, 1998.
2. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. The Non-Hodgkin's Lymphoma Classification Project. Blood 89 (11): 3909-18, 1997.
3. Society for Hematopathology Program.: Society for Hematopathology Program. Am J Surg Pathol 21(1): 114-121, 1997.
4. López-Guillermo A, Cabanillas F, McDonnell TI, et al.: Correlation of bcl-2 rearrangement with clinical characteristics and outcome in indolent follicular lymphoma. Blood 93 (9): 3081-7, 1999.
5. Peterson BA, Petroni GR, Frizzera G, et al.: Prolonged single-agent versus combination chemotherapy in indolent follicular lymphomas: a study of the cancer and leukemia group B. J Clin Oncol 21 (1): 5-15, 2003.
6. Swenson WT, Wooldridge JE, Lynch CF, et al.: Improved survival of follicular lymphoma patients in the United States. J Clin Oncol 23 (22): 5019-26, 2005.
7. Liu Q, Fayad L, Cabanillas F, et al.: Improvement of overall and failure-free survival in stage IV follicular lymphoma: 25 years of treatment experience at The University of Texas M.D. Anderson Cancer Center. J Clin Oncol 24 (10): 1582-9, 2006.
8. Hiddemann W, Buske C, Dreyling M, et al.: Treatment strategies in follicular lymphomas: current status and future perspectives. J Clin Oncol 23 (26): 6394-9, 2005.
9. Fisher RI, LeBlanc M, Press OW, et al.: New treatment options have changed the survival of patients with follicular lymphoma. J Clin Oncol 23 (33): 8447-52, 2005.
10. Ardeshna KM, Smith P, Norton A, et al.: Long-term effect of a watch and wait policy versus immediate systemic treatment for asymptomatic advanced-stage non-Hodgkin lymphoma: a randomised controlled trial. Lancet 362 (9383): 516-22, 2003.
11. Solal-Céligny P, Roy P, Colombat P, et al.: Follicular lymphoma international prognostic index. Blood 104 (5): 1258-65, 2004.
12. Perea G, Altés A, Montoto S, et al.: Prognostic indexes in follicular lymphoma: a comparison of different prognostic systems. Ann Oncol 16 (9): 1508-13, 2005.
13. Buske C, Hoster E, Dreyling M, et al.: The Follicular Lymphoma International Prognostic Index (FLIPI) separates high-risk from intermediate- or low-risk patients with advanced-stage follicular lymphoma treated front-line with rituximab and the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) with respect to treatment outcome. Blood 108 (5): 1504-8, 2006.
14. Federico M, Bellei M, Marcheselli L, et al.: Follicular lymphoma international prognostic index 2: a new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J Clin Oncol 27 (27): 4555-62, 2009.
15. Dave SS, Wright G, Tan B, et al.: Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351 (21): 2159-69, 2004.
16. Peterson BA: Current treatment of follicular low-grade lymphomas. Semin Oncol 26 (5 Suppl 14): 2-11, 1999.
17. Schaaf M, Reiser M, Borchmann P, et al.: High-dose therapy with autologous stem cell transplantation versus chemotherapy or immuno-chemotherapy for follicular lymphoma in adults. Cochrane Database Syst Rev 1: CD007678, 2012.
18. Schmatz AI, Streubel B, Kretschmer-Chott E, et al.: Primary follicular lymphoma of the duodenum is a distinct mucosal/submucosal variant of follicular lymphoma: a retrospective study of 63 cases. J Clin Oncol 29 (11): 1445-51, 2011.
19. Jegalian AG, Eberle FC, Pack SD, et al.: Follicular lymphoma in situ: clinical implications and comparisons with partial involvement by follicular lymphoma. Blood 118 (11): 2976-84, 2011.
20. Louissaint A Jr, Ackerman AM, Dias-Santagata D, et al.: Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood 120 (12): 2395-404, 2012.
21. Tsimberidou AM, O'Brien S, Khouri I, et al.: Clinical outcomes and prognostic factors in patients with Richter's syndrome treated with chemotherapy or chemoimmunotherapy with or without stem-cell transplantation. J Clin Oncol 24 (15): 2343-51, 2006.
22. Montoto S, Davies AJ, Matthews J, et al.: Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J Clin Oncol 25 (17): 2426-33, 2007.
23. Villa D, Crump M, Panzarella T, et al.: Autologous and allogeneic stem-cell transplantation for transformed follicular lymphoma: a report of the Canadian blood and marrow transplant group. J Clin Oncol 31 (9): 1164-71, 2013.
24. Williams CD, Harrison CN, Lister TA, et al.: High-dose therapy and autologous stem-cell support for chemosensitive transformed low-grade follicular non-Hodgkin's lymphoma: a case-matched study from the European Bone Marrow Transplant Registry. J Clin Oncol 19 (3): 727-35, 2001.
25. Facon T, Brouillard M, Duhamel A, et al.: Prognostic factors in Waldenström's macroglobulinemia: a report of 167 cases. J Clin Oncol 11 (8): 1553-8, 1993.
26. Vijay A, Gertz MA: Waldenström macroglobulinemia. Blood 109 (12): 5096-103, 2007.
27. Dimopoulos MA, Kyle RA, Anagnostopoulos A, et al.: Diagnosis and management of Waldenstrom's macroglobulinemia. J Clin Oncol 23 (7): 1564-77, 2005.
28. Dhodapkar MV, Hoering A, Gertz MA, et al.: Long-term survival in Waldenstrom macroglobulinemia: 10-year follow-up of Southwest Oncology Group-directed intergroup trial S9003. Blood 113 (4): 793-6, 2009.
29. Ansell SM, Kyle RA, Reeder CB, et al.: Diagnosis and management of Waldenström macroglobulinemia: Mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines. Mayo Clin Proc 85 (9): 824-33, 2010.
30. Leblond V, Ben-Othman T, Deconinck E, et al.: Activity of fludarabine in previously treated Waldenström's macroglobulinemia: a report of 71 cases. Groupe Coopératif Macroglobulinémie. J Clin Oncol 16 (6): 2060-4, 1998.
31. Foran JM, Rohatiner AZ, Coiffier B, et al.: Multicenter phase II study of fludarabine phosphate for patients with newly diagnosed lymphoplasmacytoid lymphoma, Waldenström's macroglobulinemia, and mantle-cell lymphoma. J Clin Oncol 17 (2): 546-53, 1999.
32. Baldini L, Goldaniga M, Guffanti A, et al.: Immunoglobulin M monoclonal gammopathies of undetermined significance and indolent Waldenstrom's macroglobulinemia recognize the same determinants of evolution into symptomatic lymphoid disorders: proposal for a common prognostic scoring system. J Clin Oncol 23 (21): 4662-8, 2005.
33. Gertz MA, Anagnostopoulos A, Anderson K, et al.: Treatment recommendations in Waldenstrom's macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia. Semin Oncol 30 (2): 121-6, 2003.
34. Dimopoulos MA, Anagnostopoulos A, Kyrtsonis MC, et al.: Primary treatment of Waldenström macroglobulinemia with dexamethasone, rituximab, and cyclophosphamide. J Clin Oncol 25 (22): 3344-9, 2007.
35. Treon SP, Branagan AR, Ioakimidis L, et al.: Long-term outcomes to fludarabine and rituximab in Waldenström macroglobulinemia. Blood 113 (16): 3673-8, 2009.
36. Leblond V, Johnson S, Chevret S, et al.: Results of a randomized trial of chlorambucil versus fludarabine for patients with untreated Waldenström macroglobulinemia, marginal zone lymphoma, or lymphoplasmacytic lymphoma. J Clin Oncol 31 (3): 301-7, 2013.
37. Dimopoulos MA, Zervas C, Zomas A, et al.: Treatment of Waldenström's macroglobulinemia with rituximab. J Clin Oncol 20 (9): 2327-33, 2002.
38. Treon SP, Branagan AR, Hunter Z, et al.: Paradoxical increases in serum IgM and viscosity levels following rituximab in Waldenstrom's macroglobulinemia. Ann Oncol 15 (10): 1481-3, 2004.
39. Dimopoulos MA, Chen C, Kastritis E, et al.: Bortezomib as a treatment option in patients with Waldenström macroglobulinemia. Clin Lymphoma Myeloma Leuk 10 (2): 110-7, 2010.
40. Dimopoulos MA, Alexanian R: Waldenstrom's macroglobulinemia. Blood 83 (6): 1452-9, 1994.
41. Laszlo D, Andreola G, Rigacci L, et al.: Rituximab and subcutaneous 2-chloro-2'-deoxyadenosine combination treatment for patients with Waldenstrom macroglobulinemia: clinical and biologic results of a phase II multicenter study. J Clin Oncol 28 (13): 2233-8, 2010.
42. García-Sanz R, Montoto S, Torrequebrada A, et al.: Waldenström macroglobulinaemia: presenting features and outcome in a series with 217 cases. Br J Haematol 115 (3): 575-82, 2001.
43. Buske C, Hoster E, Dreyling M, et al.: The addition of rituximab to front-line therapy with CHOP (R-CHOP) results in a higher response rate and longer time to treatment failure in patients with lymphoplasmacytic lymphoma: results of a randomized trial of the German Low-Grade Lymphoma Study Group (GLSG). Leukemia 23 (1): 153-61, 2009.
44. Ghobrial IM, Hong F, Padmanabhan S, et al.: Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory Waldenstrom macroglobulinemia. J Clin Oncol 28 (8): 1422-8, 2010.
45. Treon SP, Ioakimidis L, Soumerai JD, et al.: Primary therapy of Waldenström macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol 27 (23): 3830-5, 2009.
46. Rotoli B, De Renzo A, Frigeri F, et al.: A phase II trial on alpha-interferon (alpha IFN) effect in patients with monoclonal IgM gammopathy. Leuk Lymphoma 13 (5-6): 463-9, 1994.
47. Dreger P, Glass B, Kuse R, et al.: Myeloablative radiochemotherapy followed by reinfusion of purged autologous stem cells for Waldenström's macroglobulinaemia. Br J Haematol 106 (1): 115-8, 1999.
48. Desikan R, Dhodapkar M, Siegel D, et al.: High-dose therapy with autologous haemopoietic stem cell support for Waldenström's macroglobulinaemia. Br J Haematol 105 (4): 993-6, 1999.
49. Martin P, Chadburn A, Christos P, et al.: Intensive treatment strategies may not provide superior outcomes in mantle cell lymphoma: overall survival exceeding 7 years with standard therapies. Ann Oncol 19 (7): 1327-30, 2008.
50. Kyriakou C, Canals C, Cornelissen JJ, et al.: Allogeneic stem-cell transplantation in patients with Waldenström macroglobulinemia: report from the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol 28 (33): 4926-34, 2010.
51. Leleu X, Soumerai J, Roccaro A, et al.: Increased incidence of transformation and myelodysplasia/acute leukemia in patients with Waldenström macroglobulinemia treated with nucleoside analogs. J Clin Oncol 27 (2): 250-5, 2009.
52. Leblond V, Lévy V, Maloisel F, et al.: Multicenter, randomized comparative trial of fludarabine and the combination of cyclophosphamide-doxorubicin-prednisone in 92 patients with Waldenström macroglobulinemia in first relapse or with primary refractory disease. Blood 98 (9): 2640-4, 2001.
53. Vallisa D, Bernuzzi P, Arcaini L, et al.: Role of anti-hepatitis C virus (HCV) treatment in HCV-related, low-grade, B-cell, non-Hodgkin's lymphoma: a multicenter Italian experience. J Clin Oncol 23 (3): 468-73, 2005.
54. Pugh WC: Is the working formulation adequate for the classification of the low grade lymphomas? Leuk Lymphoma 10(Suppl): 1-8, 1993.
55. Fisher RI, Dahlberg S, Nathwani BN, et al.: A clinical analysis of two indolent lymphoma entities: mantle cell lymphoma and marginal zone lymphoma (including the mucosa-associated lymphoid tissue and monocytoid B-cell subcategories): a Southwest Oncology Group study. Blood 85 (4): 1075-82, 1995.
56. Isaacson PG: Lymphomas of mucosa-associated lymphoid tissue (MALT). Histopathology 16: 617-619, 1990.
57. Nizze H, Cogliatti SB, von Schilling C, et al.: Monocytoid B-cell lymphoma: morphological variants and relationship to low-grade B-cell lymphoma of the mucosa-associated lymphoid tissue. Histopathology 18 (5): 403-14, 1991.
58. Pimpinelli N, Santucci M, Mori M, et al.: Primary cutaneous B-cell lymphoma: a clinically homogeneous entity? J Am Acad Dermatol 37 (6): 1012-6, 1997.
59. Li G, Hansmann ML, Zwingers T, et al.: Primary lymphomas of the lung: morphological, immunohistochemical and clinical features. Histopathology 16 (6): 519-31, 1990.
60. Zinzani PL, Magagnoli M, Galieni P, et al.: Nongastrointestinal low-grade mucosa-associated lymphoid tissue lymphoma: analysis of 75 patients. J Clin Oncol 17 (4): 1254, 1999.
61. Nathwani BN, Drachenberg MR, Hernandez AM, et al.: Nodal monocytoid B-cell lymphoma (nodal marginal-zone B-cell lymphoma). Semin Hematol 36 (2): 128-38, 1999.
62. Bertoni F, Zucca E: State-of-the-art therapeutics: marginal-zone lymphoma. J Clin Oncol 23 (26): 6415-20, 2005.
63. Zullo A, Hassan C, Andriani A, et al.: Eradication therapy for Helicobacter pylori in patients with gastric MALT lymphoma: a pooled data analysis. Am J Gastroenterol 104 (8): 1932-7; quiz 1938, 2009.
64. Nakamura S, Sugiyama T, Matsumoto T, et al.: Long-term clinical outcome of gastric MALT lymphoma after eradication of Helicobacter pylori: a multicentre cohort follow-up study of 420 patients in Japan. Gut 61 (4): 507-13, 2012.
65. Wündisch T, Thiede C, Morgner A, et al.: Long-term follow-up of gastric MALT lymphoma after Helicobacter pylori eradication. J Clin Oncol 23 (31): 8018-24, 2005.
66. Ye H, Liu H, Raderer M, et al.: High incidence of t(11;18)(q21;q21) in Helicobacter pylori-negative gastric MALT lymphoma. Blood 101 (7): 2547-50, 2003.
67. Lévy M, Copie-Bergman C, Gameiro C, et al.: Prognostic value of translocation t(11;18) in tumoral response of low-grade gastric lymphoma of mucosa-associated lymphoid tissue type to oral chemotherapy. J Clin Oncol 23 (22): 5061-6, 2005.
68. Nakamura S, Ye H, Bacon CM, et al.: Clinical impact of genetic aberrations in gastric MALT lymphoma: a comprehensive analysis using interphase fluorescence in situ hybridisation. Gut 56 (10): 1358-63, 2007.
69. Schechter NR, Yahalom J: Low-grade MALT lymphoma of the stomach: a review of treatment options. Int J Radiat Oncol Biol Phys 46 (5): 1093-103, 2000.
70. Tsang RW, Gospodarowicz MK, Pintilie M, et al.: Stage I and II MALT lymphoma: results of treatment with radiotherapy. Int J Radiat Oncol Biol Phys 50 (5): 1258-64, 2001.
71. Tsang RW, Gospodarowicz MK, Pintilie M, et al.: Localized mucosa-associated lymphoid tissue lymphoma treated with radiation therapy has excellent clinical outcome. J Clin Oncol 21 (22): 4157-64, 2003.
72. Tsai HK, Li S, Ng AK, et al.: Role of radiation therapy in the treatment of stage I/II mucosa-associated lymphoid tissue lymphoma. Ann Oncol 18 (4): 672-8, 2007.
73. Martinelli G, Laszlo D, Ferreri AJ, et al.: Clinical activity of rituximab in gastric marginal zone non-Hodgkin's lymphoma resistant to or not eligible for anti-Helicobacter pylori therapy. J Clin Oncol 23 (9): 1979-83, 2005.
74. Cogliatti SB, Schmid U, Schumacher U, et al.: Primary B-cell gastric lymphoma: a clinicopathological study of 145 patients. Gastroenterology 101 (5): 1159-70, 1991.
75. Thieblemont C, Bastion Y, Berger F, et al.: Mucosa-associated lymphoid tissue gastrointestinal and nongastrointestinal lymphoma behavior: analysis of 108 patients. J Clin Oncol 15 (4): 1624-30, 1997.
76. Pavlick AC, Gerdes H, Portlock CS: Endoscopic ultrasound in the evaluation of gastric small lymphocytic mucosa-associated lymphoid tumors. J Clin Oncol 15 (5): 1761-6, 1997.
77. Morgner A, Miehlke S, Fischbach W, et al.: Complete remission of primary high-grade B-cell gastric lymphoma after cure of Helicobacter pylori infection. J Clin Oncol 19 (7): 2041-8, 2001.
78. Chen LT, Lin JT, Shyu RY, et al.: Prospective study of Helicobacter pylori eradication therapy in stage I(E) high-grade mucosa-associated lymphoid tissue lymphoma of the stomach. J Clin Oncol 19 (22): 4245-51, 2001.
79. Chen LT, Lin JT, Tai JJ, et al.: Long-term results of anti-Helicobacter pylori therapy in early-stage gastric high-grade transformed MALT lymphoma. J Natl Cancer Inst 97 (18): 1345-53, 2005.
80. Kuo SH, Yeh KH, Wu MS, et al.: Helicobacter pylori eradication therapy is effective in the treatment of early-stage H pylori-positive gastric diffuse large B-cell lymphomas. Blood 119 (21): 4838-44; quiz 5057, 2012.
81. Uno T, Isobe K, Shikama N, et al.: Radiotherapy for extranodal, marginal zone, B-cell lymphoma of mucosa-associated lymphoid tissue originating in the ocular adnexa: a multiinstitutional, retrospective review of 50 patients. Cancer 98 (4): 865-71, 2003.
82. Bayraktar S, Bayraktar UD, Stefanovic A, et al.: Primary ocular adnexal mucosa-associated lymphoid tissue lymphoma (MALT): single institution experience in a large cohort of patients. Br J Haematol 152 (1): 72-80, 2011.
83. Stefanovic A, Lossos IS: Extranodal marginal zone lymphoma of the ocular adnexa. Blood 114 (3): 501-10, 2009.
84. Raderer M, Streubel B, Woehrer S, et al.: High relapse rate in patients with MALT lymphoma warrants lifelong follow-up. Clin Cancer Res 11 (9): 3349-52, 2005.
85. Sretenovic M, Colovic M, Jankovic G, et al.: More than a third of non-gastric malt lymphomas are disseminated at diagnosis: a single center survey. Eur J Haematol 82 (5): 373-80, 2009.
86. Raderer M, Wöhrer S, Streubel B, et al.: Assessment of disease dissemination in gastric compared with extragastric mucosa-associated lymphoid tissue lymphoma using extensive staging: a single-center experience. J Clin Oncol 24 (19): 3136-41, 2006.
87. Zucca E, Conconi A, Laszlo D, et al.: Addition of rituximab to chlorambucil produces superior event-free survival in the treatment of patients with extranodal marginal-zone B-cell lymphoma: 5-year analysis of the IELSG-19 Randomized Study. J Clin Oncol 31 (5): 565-72, 2013.
88. Ferreri AJ, Ponzoni M, Guidoboni M, et al.: Bacteria-eradicating therapy with doxycycline in ocular adnexal MALT lymphoma: a multicenter prospective trial. J Natl Cancer Inst 98 (19): 1375-82, 2006.
89. Kuo SH, Chen LT, Yeh KH, et al.: Nuclear expression of BCL10 or nuclear factor kappa B predicts Helicobacter pylori-independent status of early-stage, high-grade gastric mucosa-associated lymphoid tissue lymphomas. J Clin Oncol 22 (17): 3491-7, 2004.
90. Isaacson PG: Gastrointestinal lymphoma. Hum Pathol 25 (10): 1020-9, 1994.
91. Lecuit M, Abachin E, Martin A, et al.: Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N Engl J Med 350 (3): 239-48, 2004.
92. Franco V, Florena AM, Iannitto E: Splenic marginal zone lymphoma. Blood 101 (7): 2464-72, 2003.
93. Iannitto E, Ambrosetti A, Ammatuna E, et al.: Splenic marginal zone lymphoma with or without villous lymphocytes. Hematologic findings and outcomes in a series of 57 patients. Cancer 101 (9): 2050-7, 2004.
94. Arcaini L, Paulli M, Boveri E, et al.: Splenic and nodal marginal zone lymphomas are indolent disorders at high hepatitis C virus seroprevalence with distinct presenting features but similar morphologic and phenotypic profiles. Cancer 100 (1): 107-15, 2004.
95. Parry-Jones N, Matutes E, Gruszka-Westwood AM, et al.: Prognostic features of splenic lymphoma with villous lymphocytes: a report on 129 patients. Br J Haematol 120 (5): 759-64, 2003.
96. Arcaini L, Lazzarino M, Colombo N, et al.: Splenic marginal zone lymphoma: a prognostic model for clinical use. Blood 107 (12): 4643-9, 2006.
97. Hermine O, Lefrère F, Bronowicki JP, et al.: Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med 347 (2): 89-94, 2002.
98. Kelaidi C, Rollot F, Park S, et al.: Response to antiviral treatment in hepatitis C virus-associated marginal zone lymphomas. Leukemia 18 (10): 1711-6, 2004.
99. de Bruin PC, Beljaards RC, van Heerde P, et al.: Differences in clinical behaviour and immunophenotype between primary cutaneous and primary nodal anaplastic large cell lymphoma of T-cell or null cell phenotype. Histopathology 23 (2): 127-35, 1993.
100. Willemze R, Beljaards RC: Spectrum of primary cutaneous CD30 (Ki-1)-positive lymphoproliferative disorders. A proposal for classification and guidelines for management and treatment. J Am Acad Dermatol 28 (6): 973-80, 1993.
101. Kempf W, Pfaltz K, Vermeer MH, et al.: EORTC, ISCL, and USCLC consensus recommendations for the treatment of primary cutaneous CD30-positive lymphoproliferative disorders: lymphomatoid papulosis and primary cutaneous anaplastic large-cell lymphoma. Blood 118 (15): 4024-35, 2011.

Aggressive NHL

Aggressive non-Hodgkin lymphoma (NHL) includes the following subtypes:

  • Diffuse large B-cell lymphoma.
  • Mediastinal large B-cell lymphoma (primary mediastinal large B-cell lymphoma).
  • Follicular large cell lymphoma.
  • Anaplastic large cell lymphoma.
  • Extranodal NK-/T-cell lymphoma.
  • Lymphomatoid granulomatosis.
  • Angioimmunoblastic T-cell lymphoma.
  • Peripheral T-cell lymphoma.
  • Enteropathy-type intestinal T-cell lymphoma.
  • Intravascular large B-cell lymphoma (intravascular lymphomatosis).
  • Burkitt lymphoma/diffuse small noncleaved-cell lymphoma.
  • Lymphoblastic lymphoma.
  • Adult T-cell leukemia/lymphoma.
  • Mantle cell lymphoma.
  • Polymorphic posttransplantation lymphoproliferative disorder.
  • True histiocytic lymphoma.
  • Primary effusion lymphoma.

Diffuse Large B-cell Lymphoma

Diffuse large B-cell lymphoma (DLBCL) is the most common of the NHLs and comprises 30% of newly diagnosed cases.[1] Most patients present with rapidly enlarging masses, often with both local and systemic symptoms (designated B symptoms with fever, recurrent night sweats, or weight loss). (Refer to the PDQ summary on Fever, Sweats, and Hot Flashes and the PDQ summary on Nutrition in Cancer Care for more information on weight loss.)

Some cases of large B-cell lymphoma have a prominent background of reactive T cells and often of histiocytes, so-called T-cell/histiocyte-rich large B-cell lymphoma. This subtype of large cell lymphoma has frequent liver, spleen, and bone marrow involvement; however, the outcome is equivalent to that of similarly staged patients with DLBCL.[2,3,4] Some patients with DLCBL at diagnosis have a concomitant indolent small B-cell component; while overall survival (OS) appears similar after multidrug chemotherapy, there is a higher risk of indolent relapse.[5]

Prognosis

The vast majority of patients with localized disease are curable with combined–modality therapy or combination chemotherapy alone.[6] For patients with advanced-stage disease, 50% of presenting patients are cured with doxorubicin-based combination chemotherapy and rituximab.[7,8,9]

An International Prognostic Index (IPI) for aggressive NHL (diffuse large cell lymphoma) identifies five significant risk factors prognostic of OS:[10]

1.Age (≤60 years vs. >60 years).
2.Serum lactate dehydrogenase (LDH) (normal vs. elevated).
3.Performance status (0 or 1 vs. 2–4).
4.Stage (stage I or stage II vs. stage III or stage IV).
5.Extranodal site involvement (0 or 1 vs. 2–4).

Patients with two or more risk factors have a less than 50% chance of relapse-free survival and OS at 5 years. This study also identifies patients at high risk of relapse based on specific sites of involvement, including bone marrow, central nervous system (CNS), liver, lung, and spleen. Age-adjusted and stage-adjusted modifications of this IPI are used for younger patients with localized disease.[11] The bcl-2 gene and rearrangment of the myc gene or dual overexpression of the myc gene, or both, confer a particularly poor prognosis.[12,13,14,15] Patients at high risk of relapse may be considered for clinical trials.[16] Molecular profiles of gene expression using DNA microarrays may help to stratify patients in the future for therapies directed at specific targets and to better predict survival after standard chemotherapy.[17,18,19,20,21]

CNS prophylaxis

CNS prophylaxis (usually with four to six injections of methotrexate intrathecally) is recommended for patients with paranasal sinus or testicular involvement. Some clinicians are employing high-dose intravenous methotrexate (usually four doses) as an alternative to intrathecal therapy because drug delivery is improved and patient morbidity is decreased.[22] CNS prophylaxis for bone marrow involvement is controversial; some investigators recommend it, others do not.[23,24] A retrospective analysis of 605 patients with diffuse large cell lymphoma who did not receive prophylactic intrathecal therapy identified an elevated serum LDH and more than one extranodal site as independent risk factors for CNS recurrence. Patients with both risk factors have a 17% probability of CNS recurrence at 1 year after diagnosis (95% confidence interval [CI], 7%–28%) versus 2.8% (95% CI, 2.7%–2.9%) for the remaining patients.[25][Level of evidence: 3iiiDiii] The addition of rituximab to CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone)-based regimens has significantly reduced the risk of CNS relapse in retrospective analyses.[26,27]

Primary Mediastinal Large B-cell Lymphoma

Primary mediastinal (thymic) large B-cell lymphoma is a subset of diffuse large cell lymphoma characterized by significant fibrosis on histology.[28,29,30,31,32,33,34] Patients are usually female and young (median age of 30–40 years). Patients present with a locally invasive anterior mediastinal mass that may cause respiratory symptoms or superior vena cava syndrome.

Prognosis and therapy is the same as for other comparably staged patients with DLCBL. Uncontrolled, phase II studies employing dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin) plus rituximab or R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) show high cure rates while avoiding any mediastinal radiation.[35,36,37,38][Level of evidence: 3iiiA] These results suggest that patients who receive R-CHOP-based regimens may avoid the serious long-term complications of radiation therapy when given with chemotherapy. Posttreatment fluorine-18-fluorodeoxyglucose–positron-emission tomography–computed tomography (FDG-PET-CT) scans appear unreliable with many false positives.[35] The only randomized trial showing an OS advantage for combined modality therapy was retracted. (Refer to the Superior Vena Cava Syndrome section in the PDQ summary on Cardiopulmonary Syndromes for more information.)

Follicular Large Cell Lymphoma

Prognosis

The natural history of follicular large cell lymphoma remains controversial.[39] While there is agreement about the significant number of long-term disease-free survivors with early-stage disease, the curability of patients with advanced disease (stage III or stage IV) remains uncertain. Some groups report a continuous relapse rate similar to the other follicular lymphomas (a pattern of indolent lymphoma).[40] Other investigators report a plateau in freedom-from-progression at levels expected for an aggressive lymphoma (40% at 10 years).[41,42] This discrepancy may be caused by variations in histologic classification between institutions and the rarity of patients with follicular large cell lymphoma. A retrospective review of 252 patients, all treated with anthracycline-containing combination chemotherapy, showed that patients with more than 50% diffuse components on biopsy had a worse OS than other patients with follicular large cell lymphoma.[43]

Therapeutic approaches

Treatment of these patients is more similar to treatment of aggressive NHL than it is to the treatment of indolent NHL. In support of this approach, treatment with high-dose chemotherapy and autologous hematopoietic peripheral stem cell transplantation (SCT) shows the same curative potential in patients with follicular large cell lymphoma who relapse as it does in patients with diffuse large cell lymphoma who relapse.[44][Level of evidence: 3iiiA]

Anaplastic Large Cell Lymphoma

Anaplastic large cell lymphomas (ALCL) may be confused with carcinomas and are associated with the Ki-1 (CD30) antigen. These lymphomas are usually of T-cell origin, often present with extranodal disease, and are found especially in the skin.

The translocation of chromosomes 2 and 5 creates a unique fusion protein with a nucleophosmin-ALK.[45]

Patients whose lymphomas express ALK (immunohistochemistry) are usually younger and may have systemic symptoms, extranodal disease, and advanced-stage disease; however, they have a more favorable survival rate than that of ALK-negative patients.[46,47]

Patients with anaplastic lymphoma kinase (ALK)-positive ALCL are generally treated the same as patients with diffuse large cell lymphomas using the CHOP regimen and have a prognosis that is as good as comparably staged patients.[47] For patients with relapsed disease, anecdotal responses have been reported for brentuximab vedotin (anti-tubulin agent attached to a CD30-specific monoclonal antibody) [48,49], romidepsin [50], and pralatrexate.[51][Level of evidence: 3iiiDiv]

ALCL in children is usually characterized by systemic and cutaneous disease and has high response rates and good OS with doxorubicin-based combination chemotherapy.[52]

Extranodal NK-/T-cell Lymphoma

Extranodalnatural killer (NK)-/T-cell lymphoma (nasal type) is an aggressive lymphoma marked by extensive necrosis and angioinvasion, most often presenting in extranodal sites, in particular the nasal or paranasal sinus region.[53,54,55,56] Other extranodal sites include the palate, trachea, skin, and gastrointestinal tract. Hemophagocytic syndrome may occur; historically, these tumors were considered part of lethal midline granuloma.[57] In most cases, Epstein-Barr virus (EBV) genomes are detectable in the tumor cells and immunophenotyping shows CD56 positivity. Cases with blood and marrow involvement are considered NK-cell leukemia.

The increased risk of CNS involvement and of local recurrence has led to recommendations for radiation therapy locally, concurrently, or prior to the start of chemotherapy, and for intrathecal prophylaxis and/or prophylactic cranial radiation therapy.[58,59,60,61,62,63] The highly aggressive course, with poor response and short survival with standard therapies, especially for patients with advanced-stage disease or extranasal presentation, has led some investigators to recommend autologous or allogenic peripheral SCT consolidation.[54,55,56,64,65] L-asparaginase-containing regimens have shown anecdotal response rates greater than 50% for relapsing, refractory, or newly diagnosed stage IV patients.[66,67] NK-/T-cell lymphoma that presents only in the skin has a more favorable prognosis, especially in patients with coexpression of CD30 with CD56.[68] A benign NK-cell enteropathy (EBV negative) on endoscopic biopsy should be distinguished from NK-/T-cell lymphoma.[69]

Lymphomatoid Granulomatosis

Lymphomatoid granulomatosis is an EBV-positive large B-cell lymphoma with a predominant T-cell background.[70,71] The histology shows association with angioinvasion and vasculitis, usually manifesting as pulmonary lesions or paranasal sinus involvement.

Patients are managed like others with diffuse large cell lymphoma and require doxorubicin-based combination chemotherapy.

Angioimmunoblastic T-cell Lymphoma

Angioimmunoblastic T-cell lymphoma (AITL) or (ATCL) was formerly called angioimmunoblastic lymphadenopathy with dysproteinemia. Characterized by clonal T-cell receptor gene rearrangement, this entity is managed like diffuse large cell lymphoma.[72,73,74] Patients present with profound lymphadenopathy, fever, night sweats, weight loss, skin rash, a positive Coombs test, and polyclonal hypergammaglobulinemia.[57] (Refer to the information on night sweats in the PDQ summary on Fever, Sweats, and Hot Flashes, information on weight loss in the in the PDQ summary on Nutrition in Cancer Care, and information on skin rash in the PDQ summary on Pruritus.) Opportunistic infections are frequent because of an underlying immune deficiency. B-cell EBV genomes are detected in most affected patients.[75]

Doxorubicin-based combination chemotherapy, such as the CHOP regimen, is recommended as it is for other aggressive lymphomas.[72] The International Peripheral T-Cell Lymphoma Project involving 22 international centers identified 243 patients with AITL or ATCL; the 5-year OS and failure-free survival rates were 33% and 18%.[76] Myeloablative chemotherapy and radiation therapy with autologous or allogeneic peripheral stem cell support has been described in anecdotal reports.[64,77,78] Anecdotal responses have been reported for cyclosporine,[79] pralatrexate,[51] bendamustine,[80] and the histone deacetylase inhibitor romidepsin.[50][Level of evidence: 3iiiDiv] Occasional spontaneous remissions and protracted responses to steroids only have been reported.

Peripheral T-cell Lymphoma

Patients with peripheral T-cell lymphoma have diffuse large cell or diffuse mixed lymphoma that expresses a cell surface phenotype of a postthymic (or peripheral) T-cell expressing CD4 or CD8 but not both together.[81] Peripheral T-cell lymphoma encompasses a group of heterogeneous nodal T-cell lymphomas that will require future delineation.[57] This includes the so-called Lennert lymphoma, a T-cell lymphoma admixed with a preponderance of lymphoepithelioid cells.

Prognosis

Most investigators report worse response and survival rates for patients with peripheral T-cell lymphomas than for patients with comparably staged B-cell aggressive lymphomas.[82,83] Most patients present with multiple adverse prognostic factors (i.e., older age, stage IV, multiple extranodal sites, and elevated LDH), and these patients have a low (<20%) failure-free survival and OS at 5 years.[82,83]

Therapeutic approaches

Therapy involves doxorubicin-based combination chemotherapy (such as CHOP), which is also used for DLBCL. Consolidation using high-dose chemotherapy with autologous or allogeneic hematopoietic stem cell support has been applied to patients with advanced-stage peripheral T-cell lymphoma after induction therapy with CHOP-based regimens. Evidence for this approach is anecdotal.[64,77,84,85] For relapsing patients, pralatrexate has shown a 30% response rate and a median 10-month duration of response for 109 evaluable patients in a prospective trial.[50,86][Level of evidence: 3iiiDiv] Also for relapsing patients, similar response rates were seen for romidepsin for 130 evaluable patients in a prospective trial.[50][Level of evidence: 3iiiDiv] Anecdotal responses have been seen with pralatrexate [51] and with bendamustine.[80][Level of evidence: 3iiiDiv] Anecdotal responses have also been seen with alemtuzumab, an anti-CD52 monoclonal antibody, or denileukin diftitox, a toxin-antibody ligand, after relapse from previous chemotherapy.[87,88]

An unusual type of peripheral T-cell lymphoma occurring mostly in young men, hepatosplenic T-cell lymphoma, appears to be localized to the hepatic and splenic sinusoids, with cell surface expression of the T-cell receptor gamma/delta.[89,90,91,92,93] Another variant, subcutaneous panniculitis-like T-cell lymphoma, is localized to subcutaneous tissue associated with hemophagocytic syndrome.[94,95,96,97] These patients have cells that express alpha-beta phenotype. Those with gamma-delta phenotype have a more aggressive clinical course and are classified as cutaneous gamma-delta T-cell lymphoma.[98,99,100] These patients may manifest involvement of the epidermis, dermis, subcutaneous region, or mucosa. These entities have extremely poor prognoses with an extremely aggressive clinical course and are treated within the same paradigm as the highest-risk groups with DLBCL.[64]

Enteropathy-type Intestinal T-cell Lymphoma

Enteropathy-type intestinal T-cell lymphoma involves the small bowel of patients with gluten-sensitive enteropathy (celiac sprue).[57,101,102,103] Since a gluten-free diet prevents the development of lymphoma, patients diagnosed with celiac sprue in childhood rarely develop lymphoma. The diagnosis of celiac disease is usually made by finding villous atrophy in the resected intestine. Surgery is often required for diagnosis and to avoid perforation during therapy.

Therapy is with doxorubicin-based combination chemotherapy, but relapse rates appear higher than for comparably staged diffuse large cell lymphoma.[102,103,104] Complications of treatment include gastrointestinal bleeding, small bowel perforation, and enterocolic fistulae; patients often require parenteral nutrition. (Refer to the PDQ summaries on Gastrointestinal Complications and Nutrition in Cancer Care for more information on parenteral nutrition.) Multifocal intestinal perforations and visceral abdominal involvement are seen at the time of relapse. High-dose therapy with hematopoietic stem cell rescue has been applied in first remission or at relapse.[64,102,105][Level of evidence: 3iiiDiii] Evidence for this approach is anecdotal.

Intravascular Large B-cell Lymphoma (Intravascular Lymphomatosis)

Intravascular lymphomatosis is characterized by large cell lymphoma confined to the intravascular lumen. The brain, kidneys, lungs, and skin are the organs most likely affected by intravascular lymphomatosis.

With the use of aggressive combination chemotherapy, the prognosis is similar to more conventional presentations.[106,107]

Burkitt Lymphoma/Diffuse Small Noncleaved-cell Lymphoma

Burkitt lymphoma/diffuse small noncleaved-cell lymphoma typically involves younger patients and represents the most common type of pediatric NHL.[108] These types of aggressive extranodal B-cell lymphomas are characterized by translocation and deregulation of the C-myc gene on chromosome 8.[109] A subgroup of patients with dual translocation of C-myc and bcl-2 appear to have an extremely poor outcome despite aggressive therapy (5-month OS).[110][Level of evidence: 3iiiA]

In some patients with larger B cells, there is morphologic overlap with DLBCL. These Burkitt-like large cell lymphomas show C-myc deregulation, extremely high proliferation rates, and a gene-expression profile as expected for classic Burkitt lymphoma.[111,112,113] Endemic cases, usually from Africa, involve the facial bones or jaws of children, mostly containing EBV genomes. Sporadic cases usually involve the gastrointestinal system, ovaries, or kidneys. Patients present with rapidly growing masses and a very high LDH but are potentially curable with intensive doxorubicin-based combination chemotherapy.

Therapeutic approaches

Treatment of Burkitt lymphoma/diffuse small noncleaved-cell lymphoma involves aggressive multidrug regimens similar to those used for the advanced-stage aggressive lymphomas (diffuse large cell).[114,115,116] Aggressive combination chemotherapy, which is patterned after that used in childhood Burkitt lymphoma, has been described in CLB-9251 (NCT00002494), for example, and has been very successful for adult patients with more than 60% of advanced-stage patients free of disease at 5 years.[117,118,119,120,121,122] Adverse prognostic factors include bulky abdominal disease and high serum LDH. In some institutions, treatment includes the use of consolidative bone marrow transplantation (BMT).[123,124] Patients with Burkitt lymphoma have a 20% to 30% lifetime risk of CNS involvement. Prophylaxis with intrathecal chemotherapy is required as part of induction therapy.[125] (Refer to the PDQ summaries on Primary CNS Lymphoma Treatment and AIDS-Related Lymphoma Treatment for more information.)

Lymphoblastic Lymphoma

Lymphoblastic lymphoma (precursor T-cell) is a very aggressive form of NHL. It often occurs in young patients but not exclusively.[126] It is commonly associated with large mediastinal masses and has a high predilection for disseminating to bone marrow and to the CNS.

Treatment is usually patterned after that for acute lymphoblastic leukemia. Intensive combination chemotherapy with or without BMT is the standard treatment of this aggressive histologic type of NHL.[127,128,129] Radiation therapy is sometimes given to areas of bulky tumor masses. Because these forms of NHL tend to progress quickly, combination chemotherapy is instituted rapidly once the diagnosis has been confirmed. Careful review of the pathologic specimens, bone marrow aspirate, biopsy specimen, cerebrospinal fluid cytology, and lymphocyte marker constitute the most important aspects of the pretreatment staging workup. (Refer to the PDQ summary on Adult Acute Lymphoblastic Leukemia Treatment for more information.)

Adult T-cell Leukemia/Lymphoma

Adult T-cell leukemia/lymphoma (ATL) is caused by infection with the retrovirus human T-lymphotrophic virus 1 and is frequently associated with lymphadenopathy, hypercalcemia, circulating leukemic cells, bone and skin involvement, hepatosplenomegaly, a rapidly progressive course, and poor response to combination chemotherapy.[130,131] (Refer to the PDQ summary on Hypercalcemia for more information.) ATL has been divided into four clinical subtypes: acute, lymphoma, chronic, and smoldering.[132,133]

The acute and lymphoma types of ATL have done poorly with strategies of combination chemotherapy and allogeneic stem cell transplantation (ASCT) with a median OS under 1 year.[134,135,136] Using combination chemotherapy, less than 10%of 807 patients were alive after 4 years.[136] Anecdotal durable remissions have been reported after ASCT and even after subsequent donor lymphocyte infusion for relapses after transplant.[137][Level of evidence: 3iiiDiv] Among 585 patients who underwent ASCT, the 3-year OS was 36%.[138][Level of evidence: 3iiiA]

The combination of zidovudine and interferon-alpha has activity against ATL, even for patients who failed previous cytotoxic therapy. Durable remissions are seen in the majority of presenting patients with this combination but are not seen in patients with the lymphoma subtype of ATL.[139,140,141,142,143] Symptomatic local progression for all subtypes responds well to palliative radiation therapy.[144]

Mantle Cell Lymphoma

Mantle cell lymphoma is found in lymph nodes, the spleen, bone marrow, blood, and sometimes the gastrointestinal system (lymphomatous polyposis).[145,146,147] Mantle cell lymphoma is characterized by CD5-positive follicular mantle B cells, a translocation of chromosomes 11 and 14, and an overexpression of the cyclin D1 protein.[148,149]

Like the low-grade lymphomas, mantle cell lymphoma appears incurable with anthracycline-based chemotherapy and occurs in older patients with generally asymptomatic advanced-stage disease.[150] The median survival, however, is significantly shorter (3–5 years) than that of other lymphomas, and this histology is now considered to be an aggressive lymphoma.[151] A diffuse pattern and the blastoid variant have an aggressive course with shorter survival, while the mantle zone type may have a more indolent course.[152,153] A high cell-proliferation rate (increased Ki-67, mitotic index, beta-2-microglobulin) may be associated with a poorer prognosis.[148,154]

Therapeutic approaches

It is unclear which chemotherapeutic approach offers the best long-term survival in this clinicopathologic entity; early refractoriness to chemotherapy is a usual feature.[155,156,157,158,159] In a prospective randomized trial, 532 patients older than 60 years and not eligible for SCT were given either R-CHOP or R-FC (rituximab, fludarabine, cyclophosphamide) for 6 to 8 cycles, followed by maintenance therapy in responders randomly assigned to rituximab or interferon alfa maintenance therapy.[160] With a median follow-up of 37 months, the OS was significantly shorter after R-FC than after R-CHOP (47% vs. 62%, P = .005; hazard ratio [HR]death, 1.50; 95% CI, 1.13–1.99).[160][Level of evidence: 1iiA] Event-free survival favored rituximab over interferon alfa (57% progression-free survival at 4 years vs. 34%, P = .01; HR, 0.55; 95% CI, 0.36–0.87), but OS did not differ significantly (79% vs. 67% at 4 years, P = .13).[160][Level of evidence: 1iiDi] However, patients who received R-CHOP induction showed an OS benefit for rituximab over interferon alfa (87% vs. 63% at 4 years, P = .005).[160][Level of evidence: 3iiiA] Patients with low risk on the IPI may do well when initial therapy is deferred.[161][Level of evidence: 3iiiDiv] Many investigators are exploring high-dose chemoradioimmunotherapy with stem cell/marrow support or nonmyeloablative ASCT.[159,155,156,162,163,164,165,166,167,168,169,170,171] Thus far, randomized trials have not shown OS benefits from these newer approaches.[168] Bortezomib shows response rates close to 50% in relapsed patients, prompting clinical trials combining this proteasome inhibitor with rituximab and cytotoxic agents in first-line therapy.[172,173][Level of evidence: 3iiiDiv]

Polymorphic Posttransplantation Lymphoproliferative Disorder (PTLD)

Patients who undergo transplantation of the heart, lung, liver, kidney, or pancreas usually require lifelong immunosuppression. This may result in PTLD in 1% to 3% of recipients, which appears as an aggressive lymphoma.[174] Pathologists can distinguish a polyclonal B-cell hyperplasia from a monoclonal B-cell lymphoma; both are almost always associated with EBV.[175]

Prognosis

Poor performance status, grafted organ involvement, high IPI, elevated LDH, and multiple sites of disease are poor prognostic factors for PTLD.[176,177]

Therapeutic options

In some cases, withdrawal of immunosuppression results in eradication of the lymphoma.[178,179] When this is unsuccessful or not feasible, a trial of rituximab may be considered, because it has shown durable remissions in approximately 60% of patients and a favorable toxicity profile.[179,180] Sometimes, a combination of acyclovir and interferon-alpha has been used.[174,181] If these measures fail, doxorubicin-based combination chemotherapy is recommended, although most patients can avoid cytotoxic therapy.[182] Localized presentations can be controlled with surgery or radiation therapy alone. These localized mass lesions, which may grow over a period of months, are often phenotypically polyclonal and tend to occur within weeks or a few months after transplantation.[175] Multifocal, rapidly progressive disease occurs late after transplantation (>1 year) and is usually phenotypically monoclonal and associated with EBV.[183] These patients may have durable remissions using standard chemotherapy regimens for aggressive lymphoma.[183,184,185] Instances of EBV-negative PTLD occur even later (median, 5 years posttransplant) and have particularly poor prognoses.[186] A sustained clinical response after failure from chemotherapy was attained using an immunotoxin (anti-CD22 B-cell surface antigen antibody linked with ricin, a plant toxin).[187] An anti-interleukin-6 monoclonal antibody is also under clinical evaluation.[188]

True Histiocytic Lymphoma

True histiocytic lymphomas are very rare tumors that show histiocytic differentiation and express histiocytic markers in the absence of B-cell or T-cell lineage-specific immunologic markers.[189,190] Care must be taken with immunophenotypic tests to exclude ALCL or hemophagocytic syndromes caused by viral infections, especially EBV.

Therapeutic options

Therapy is modeled after the treatment of comparably staged diffuse large cell lymphomas, but the optimal approach remains to be defined.

Primary Effusion Lymphoma

Primary effusion lymphoma presents exclusively or mainly in the pleural, pericardial, or abdominal cavities in the absence of an identifiable tumor mass.[191] Patients are usually human immunodeficiency virus seropositive, and the tumor usually contains Kaposi sarcoma–associated herpes virus/human herpes virus 8.

Prognosis

The prognosis of primary effusion lymphoma is extremely poor.

Therapeutic approaches

Therapy is usually modeled after the treatment of comparably staged diffuse large cell lymphomas.

References:

1. Armitage JO, Weisenburger DD: New approach to classifying non-Hodgkin's lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin's Lymphoma Classification Project. J Clin Oncol 16 (8): 2780-95, 1998.
2. Delabie J, Vandenberghe E, Kennes C, et al.: Histiocyte-rich B-cell lymphoma. A distinct clinicopathologic entity possibly related to lymphocyte predominant Hodgkin's disease, paragranuloma subtype. Am J Surg Pathol 16 (1): 37-48, 1992.
3. Achten R, Verhoef G, Vanuytsel L, et al.: T-cell/histiocyte-rich large B-cell lymphoma: a distinct clinicopathologic entity. J Clin Oncol 20 (5): 1269-77, 2002.
4. Bouabdallah R, Mounier N, Guettier C, et al.: T-cell/histiocyte-rich large B-cell lymphomas and classical diffuse large B-cell lymphomas have similar outcome after chemotherapy: a matched-control analysis. J Clin Oncol 21 (7): 1271-7, 2003.
5. Ghesquières H, Berger F, Felman P, et al.: Clinicopathologic characteristics and outcome of diffuse large B-cell lymphomas presenting with an associated low-grade component at diagnosis. J Clin Oncol 24 (33): 5234-41, 2006.
6. Miller TP, Dahlberg S, Cassady JR, et al.: Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade non-Hodgkin's lymphoma. N Engl J Med 339 (1): 21-6, 1998.
7. Coiffier B, Lepage E, Briere J, et al.: CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346 (4): 235-42, 2002.
8. Coiffier B: State-of-the-art therapeutics: diffuse large B-cell lymphoma. J Clin Oncol 23 (26): 6387-93, 2005.
9. Habermann TM, Weller EA, Morrison VA, et al.: Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 24 (19): 3121-7, 2006.
10. A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. N Engl J Med 329 (14): 987-94, 1993.
11. Møller MB, Christensen BE, Pedersen NT: Prognosis of localized diffuse large B-cell lymphoma in younger patients. Cancer 98 (3): 516-21, 2003.
12. Cuccuini W, Briere J, Mounier N, et al.: MYC+ diffuse large B-cell lymphoma is not salvaged by classical R-ICE or R-DHAP followed by BEAM plus autologous stem cell transplantation. Blood 119 (20): 4619-24, 2012.
13. Johnson NA, Slack GW, Savage KJ, et al.: Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 30 (28): 3452-9, 2012.
14. Green TM, Young KH, Visco C, et al.: Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 30 (28): 3460-7, 2012.
15. Horn H, Ziepert M, Becher C, et al.: MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood 121 (12): 2253-63, 2013.
16. Canellos GP: CHOP may have been part of the beginning but certainly not the end: issues in risk-related therapy of large-cell lymphoma. J Clin Oncol 15 (5): 1713-6, 1997.
17. Lossos IS, Czerwinski DK, Alizadeh AA, et al.: Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 350 (18): 1828-37, 2004.
18. Abramson JS, Shipp MA: Advances in the biology and therapy of diffuse large B-cell lymphoma: moving toward a molecularly targeted approach. Blood 106 (4): 1164-74, 2005.
19. de Jong D, Rosenwald A, Chhanabhai M, et al.: Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications--a study from the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol 25 (7): 805-12, 2007.
20. Fu K, Weisenburger DD, Choi WW, et al.: Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell-like and non-germinal center B-cell-like subtypes of diffuse large B-cell lymphoma. J Clin Oncol 26 (28): 4587-94, 2008.
21. Lenz G, Staudt LM: Aggressive lymphomas. N Engl J Med 362 (15): 1417-29, 2010.
22. Glantz MJ, Cole BF, Recht L, et al.: High-dose intravenous methotrexate for patients with nonleukemic leptomeningeal cancer: is intrathecal chemotherapy necessary? J Clin Oncol 16 (4): 1561-7, 1998.
23. Fisher RI, Gaynor ER, Dahlberg S, et al.: Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma. N Engl J Med 328 (14): 1002-6, 1993.
24. Bernstein SH, Unger JM, Leblanc M, et al.: Natural history of CNS relapse in patients with aggressive non-Hodgkin's lymphoma: a 20-year follow-up analysis of SWOG 8516 -- the Southwest Oncology Group. J Clin Oncol 27 (1): 114-9, 2009.
25. van Besien K, Ha CS, Murphy S, et al.: Risk factors, treatment, and outcome of central nervous system recurrence in adults with intermediate-grade and immunoblastic lymphoma. Blood 91 (4): 1178-84, 1998.
26. Villa D, Connors JM, Shenkier TN, et al.: Incidence and risk factors for central nervous system relapse in patients with diffuse large B-cell lymphoma: the impact of the addition of rituximab to CHOP chemotherapy. Ann Oncol 21 (5): 1046-52, 2010.
27. Boehme V, Schmitz N, Zeynalova S, et al.: CNS events in elderly patients with aggressive lymphoma treated with modern chemotherapy (CHOP-14) with or without rituximab: an analysis of patients treated in the RICOVER-60 trial of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Blood 113 (17): 3896-902, 2009.
28. Lazzarino M, Orlandi E, Paulli M, et al.: Primary mediastinal B-cell lymphoma with sclerosis: an aggressive tumor with distinctive clinical and pathologic features. J Clin Oncol 11 (12): 2306-13, 1993.
29. Kirn D, Mauch P, Shaffer K, et al.: Large-cell and immunoblastic lymphoma of the mediastinum: prognostic features and treatment outcome in 57 patients. J Clin Oncol 11 (7): 1336-43, 1993.
30. Aisenberg AC: Primary large-cell lymphoma of the mediastinum. J Clin Oncol 11 (12): 2291-4, 1993.
31. Abou-Elella AA, Weisenburger DD, Vose JM, et al.: Primary mediastinal large B-cell lymphoma: a clinicopathologic study of 43 patients from the Nebraska Lymphoma Study Group. J Clin Oncol 17 (3): 784-90, 1999.
32. Cazals-Hatem D, Lepage E, Brice P, et al.: Primary mediastinal large B-cell lymphoma. A clinicopathologic study of 141 cases compared with 916 nonmediastinal large B-cell lymphomas, a GELA ("Groupe d'Etude des Lymphomes de l'Adulte") study. Am J Surg Pathol 20 (7): 877-88, 1996.
33. Popat U, Przepiork D, Champlin R, et al.: High-dose chemotherapy for relapsed and refractory diffuse large B-cell lymphoma: mediastinal localization predicts for a favorable outcome. J Clin Oncol 16 (1): 63-9, 1998.
34. van Besien K, Kelta M, Bahaguna P: Primary mediastinal B-cell lymphoma: a review of pathology and management. J Clin Oncol 19 (6): 1855-64, 2001.
35. Dunleavy K, Pittaluga S, Maeda LS, et al.: Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med 368 (15): 1408-16, 2013.
36. Savage KJ, Al-Rajhi N, Voss N, et al.: Favorable outcome of primary mediastinal large B-cell lymphoma in a single institution: the British Columbia experience. Ann Oncol 17 (1): 123-30, 2006.
37. Vassilakopoulos TP, Pangalis GA, Katsigiannis A, et al.: Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone with or without radiotherapy in primary mediastinal large B-cell lymphoma: the emerging standard of care. Oncologist 17 (2): 239-49, 2012.
38. Rieger M, Osterborg A, Pettengell R, et al.: Primary mediastinal B-cell lymphoma treated with CHOP-like chemotherapy with or without rituximab: results of the Mabthera International Trial Group study. Ann Oncol 22 (3): 664-70, 2011.
39. Longo DL: What's the deal with follicular lymphomas? J Clin Oncol 11 (2): 202-8, 1993.
40. Anderson JR, Vose JM, Bierman PJ, et al.: Clinical features and prognosis of follicular large-cell lymphoma: a report from the Nebraska Lymphoma Study Group. J Clin Oncol 11 (2): 218-24, 1993.
41. Bartlett NL, Rizeq M, Dorfman RF, et al.: Follicular large-cell lymphoma: intermediate or low grade? J Clin Oncol 12 (7): 1349-57, 1994.
42. Wendum D, Sebban C, Gaulard P, et al.: Follicular large-cell lymphoma treated with intensive chemotherapy: an analysis of 89 cases included in the LNH87 trial and comparison with the outcome of diffuse large B-cell lymphoma. Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol 15 (4): 1654-63, 1997.
43. Hans CP, Weisenburger DD, Vose JM, et al.: A significant diffuse component predicts for inferior survival in grade 3 follicular lymphoma, but cytologic subtypes do not predict survival. Blood 101 (6): 2363-7, 2003.
44. Vose JM, Bierman PJ, Lynch JC, et al.: Effect of follicularity on autologous transplantation for large-cell non-Hodgkin's lymphoma. J Clin Oncol 16 (3): 844-9, 1998.
45. Bai RY, Ouyang T, Miething C, et al.: Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 96 (13): 4319-27, 2000.
46. Gascoyne RD, Aoun P, Wu D, et al.: Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood 93 (11): 3913-21, 1999.
47. Sibon D, Fournier M, Brière J, et al.: Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d'Etude des Lymphomes de l'Adulte trials. J Clin Oncol 30 (32): 3939-46, 2012.
48. Younes A, Bartlett NL, Leonard JP, et al.: Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363 (19): 1812-21, 2010.
49. Pro B, Advani R, Brice P, et al.: Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol 30 (18): 2190-6, 2012.
50. Coiffier B, Pro B, Prince HM, et al.: Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol 30 (6): 631-6, 2012.
51. O'Connor OA, Horwitz S, Hamlin P, et al.: Phase II-I-II study of two different doses and schedules of pralatrexate, a high-affinity substrate for the reduced folate carrier, in patients with relapsed or refractory lymphoma reveals marked activity in T-cell malignancies. J Clin Oncol 27 (26): 4357-64, 2009.
52. Seidemann K, Tiemann M, Schrappe M, et al.: Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Münster Group Trial NHL-BFM 90. Blood 97 (12): 3699-706, 2001.
53. Lipford EH Jr, Margolick JB, Longo DL, et al.: Angiocentric immunoproliferative lesions: a clinicopathologic spectrum of post-thymic T-cell proliferations. Blood 72 (5): 1674-81, 1988.
54. Liang R, Todd D, Chan TK, et al.: Treatment outcome and prognostic factors for primary nasal lymphoma. J Clin Oncol 13 (3): 666-70, 1995.
55. Cheung MM, Chan JK, Lau WH, et al.: Primary non-Hodgkin's lymphoma of the nose and nasopharynx: clinical features, tumor immunophenotype, and treatment outcome in 113 patients. J Clin Oncol 16 (1): 70-7, 1998.
56. Hausdorff J, Davis E, Long G, et al.: Non-Hodgkin's lymphoma of the paranasal sinuses: clinical and pathological features, and response to combined-modality therapy. Cancer J Sci Am 3 (5): 303-11, 1997 Sep-Oct.
57. Rizvi MA, Evens AM, Tallman MS, et al.: T-cell non-Hodgkin lymphoma. Blood 107 (4): 1255-64, 2006.
58. Li YX, Yao B, Jin J, et al.: Radiotherapy as primary treatment for stage IE and IIE nasal natural killer/T-cell lymphoma. J Clin Oncol 24 (1): 181-9, 2006.
59. Lee J, Suh C, Park YH, et al.: Extranodal natural killer T-cell lymphoma, nasal-type: a prognostic model from a retrospective multicenter study. J Clin Oncol 24 (4): 612-8, 2006.
60. Li CC, Tien HF, Tang JL, et al.: Treatment outcome and pattern of failure in 77 patients with sinonasal natural killer/T-cell or T-cell lymphoma. Cancer 100 (2): 366-75, 2004.
61. Yamaguchi M, Tobinai K, Oguchi M, et al.: Phase I/II study of concurrent chemoradiotherapy for localized nasal natural killer/T-cell lymphoma: Japan Clinical Oncology Group Study JCOG0211. J Clin Oncol 27 (33): 5594-600, 2009.
62. Kim SJ, Kim K, Kim BS, et al.: Phase II trial of concurrent radiation and weekly cisplatin followed by VIPD chemotherapy in newly diagnosed, stage IE to IIE, nasal, extranodal NK/T-Cell Lymphoma: Consortium for Improving Survival of Lymphoma study. J Clin Oncol 27 (35): 6027-32, 2009.
63. Li YX, Fang H, Liu QF, et al.: Clinical features and treatment outcome of nasal-type NK/T-cell lymphoma of Waldeyer ring. Blood 112 (8): 3057-64, 2008.
64. Le Gouill S, Milpied N, Buzyn A, et al.: Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Société Francaise de Greffe de Moëlle et de Thérapie Cellulaire. J Clin Oncol 26 (14): 2264-71, 2008.
65. Au WY, Weisenburger DD, Intragumtornchai T, et al.: Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project. Blood 113 (17): 3931-7, 2009.
66. Jaccard A, Gachard N, Marin B, et al.: Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood 117 (6): 1834-9, 2011.
67. Yamaguchi M, Kwong YL, Kim WS, et al.: Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK)/T-cell lymphoma, nasal type: the NK-Cell Tumor Study Group study. J Clin Oncol 29 (33): 4410-6, 2011.
68. Mraz-Gernhard S, Natkunam Y, Hoppe RT, et al.: Natural killer/natural killer-like T-cell lymphoma, CD56+, presenting in the skin: an increasingly recognized entity with an aggressive course. J Clin Oncol 19 (8): 2179-88, 2001.
69. Mansoor A, Pittaluga S, Beck PL, et al.: NK-cell enteropathy: a benign NK-cell lymphoproliferative disease mimicking intestinal lymphoma: clinicopathologic features and follow-up in a unique case series. Blood 117 (5): 1447-52, 2011.
70. Guinee D Jr, Jaffe E, Kingma D, et al.: Pulmonary lymphomatoid granulomatosis. Evidence for a proliferation of Epstein-Barr virus infected B-lymphocytes with a prominent T-cell component and vasculitis. Am J Surg Pathol 18 (8): 753-64, 1994.
71. Myers JL, Kurtin PJ, Katzenstein AL, et al.: Lymphomatoid granulomatosis. Evidence of immunophenotypic diversity and relationship to Epstein-Barr virus infection. Am J Surg Pathol 19 (11): 1300-12, 1995.
72. Siegert W, Agthe A, Griesser H, et al.: Treatment of angioimmunoblastic lymphadenopathy (AILD)-type T-cell lymphoma using prednisone with or without the COPBLAM/IMVP-16 regimen. A multicenter study. Kiel Lymphoma Study Group. Ann Intern Med 117 (5): 364-70, 1992.
73. Jaffe ES: Angioimmunoblastic T-cell lymphoma: new insights, but the clinical challenge remains. Ann Oncol 6 (7): 631-2, 1995.
74. Siegert W, Nerl C, Agthe A, et al.: Angioimmunoblastic lymphadenopathy (AILD)-type T-cell lymphoma: prognostic impact of clinical observations and laboratory findings at presentation. The Kiel Lymphoma Study Group. Ann Oncol 6 (7): 659-64, 1995.
75. Bräuninger A, Spieker T, Willenbrock K, et al.: Survival and clonal expansion of mutating "forbidden" (immunoglobulin receptor-deficient) epstein-barr virus-infected b cells in angioimmunoblastic t cell lymphoma. J Exp Med 194 (7): 927-40, 2001.
76. Federico M, Rudiger T, Bellei M, et al.: Clinicopathologic characteristics of angioimmunoblastic T-cell lymphoma: analysis of the international peripheral T-cell lymphoma project. J Clin Oncol 31 (2): 240-6, 2013.
77. Reimer P, Rüdiger T, Geissinger E, et al.: Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: results of a prospective multicenter study. J Clin Oncol 27 (1): 106-13, 2009.
78. Kyriakou C, Canals C, Finke J, et al.: Allogeneic stem cell transplantation is able to induce long-term remissions in angioimmunoblastic T-cell lymphoma: a retrospective study from the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol 27 (24): 3951-8, 2009.
79. Advani R, Horwitz S, Zelenetz A, et al.: Angioimmunoblastic T cell lymphoma: treatment experience with cyclosporine. Leuk Lymphoma 48 (3): 521-5, 2007.
80. Damaj G, Gressin R, Bouabdallah K, et al.: Results from a prospective, open-label, phase II trial of bendamustine in refractory or relapsed T-cell lymphomas: the BENTLY trial. J Clin Oncol 31 (1): 104-10, 2013.
81. Rüdiger T, Weisenburger DD, Anderson JR, et al.: Peripheral T-cell lymphoma (excluding anaplastic large-cell lymphoma): results from the Non-Hodgkin's Lymphoma Classification Project. Ann Oncol 13 (1): 140-9, 2002.
82. Weisenburger DD, Savage KJ, Harris NL, et al.: Peripheral T-cell lymphoma, not otherwise specified: a report of 340 cases from the International Peripheral T-cell Lymphoma Project. Blood 117 (12): 3402-8, 2011.
83. Sonnen R, Schmidt WP, Müller-Hermelink HK, et al.: The International Prognostic Index determines the outcome of patients with nodal mature T-cell lymphomas. Br J Haematol 129 (3): 366-72, 2005.
84. Rodriguez J, Munsell M, Yazji S, et al.: Impact of high-dose chemotherapy on peripheral T-cell lymphomas. J Clin Oncol 19 (17): 3766-70, 2001.
85. d'Amore F, Relander T, Lauritzsen GF, et al.: Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01. J Clin Oncol 30 (25): 3093-9, 2012.
86. O'Connor OA, Pro B, Pinter-Brown L, et al.: Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol 29 (9): 1182-9, 2011.
87. Enblad G, Hagberg H, Erlanson M, et al.: A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood 103 (8): 2920-4, 2004.
88. Talpur R, Apisarnthanarax N, Ward S, et al.: Treatment of refractory peripheral T-cell lymphoma with denileukin diftitox (ONTAK). Leuk Lymphoma 43 (1): 121-6, 2002.
89. Farcet JP, Gaulard P, Marolleau JP, et al.: Hepatosplenic T-cell lymphoma: sinusal/sinusoidal localization of malignant cells expressing the T-cell receptor gamma delta. Blood 75 (11): 2213-9, 1990.
90. Wong KF, Chan JK, Matutes E, et al.: Hepatosplenic gamma delta T-cell lymphoma. A distinctive aggressive lymphoma type. Am J Surg Pathol 19 (6): 718-26, 1995.
91. François A, Lesesve JF, Stamatoullas A, et al.: Hepatosplenic gamma/delta T-cell lymphoma: a report of two cases in immunocompromised patients, associated with isochromosome 7q. Am J Surg Pathol 21 (7): 781-90, 1997.
92. Belhadj K, Reyes F, Farcet JP, et al.: Hepatosplenic gammadelta T-cell lymphoma is a rare clinicopathologic entity with poor outcome: report on a series of 21 patients. Blood 102 (13): 4261-9, 2003.
93. Chanan-Khan A, Islam T, Alam A, et al.: Long-term survival with allogeneic stem cell transplant and donor lymphocyte infusion following salvage therapy with anti-CD52 monoclonal antibody (Campath) in a patient with alpha/beta hepatosplenic T-cell non-Hodgkin's lymphoma. Leuk Lymphoma 45 (8): 1673-5, 2004.
94. Go RS, Wester SM: Immunophenotypic and molecular features, clinical outcomes, treatments, and prognostic factors associated with subcutaneous panniculitis-like T-cell lymphoma: a systematic analysis of 156 patients reported in the literature. Cancer 101 (6): 1404-13, 2004.
95. Marzano AV, Berti E, Paulli M, et al.: Cytophagic histiocytic panniculitis and subcutaneous panniculitis-like T-cell lymphoma: report of 7 cases. Arch Dermatol 136 (7): 889-96, 2000.
96. Hoque SR, Child FJ, Whittaker SJ, et al.: Subcutaneous panniculitis-like T-cell lymphoma: a clinicopathological, immunophenotypic and molecular analysis of six patients. Br J Dermatol 148 (3): 516-25, 2003.
97. Salhany KE, Macon WR, Choi JK, et al.: Subcutaneous panniculitis-like T-cell lymphoma: clinicopathologic, immunophenotypic, and genotypic analysis of alpha/beta and gamma/delta subtypes. Am J Surg Pathol 22 (7): 881-93, 1998.
98. Massone C, Chott A, Metze D, et al.: Subcutaneous, blastic natural killer (NK), NK/T-cell, and other cytotoxic lymphomas of the skin: a morphologic, immunophenotypic, and molecular study of 50 patients. Am J Surg Pathol 28 (6): 719-35, 2004.
99. Arnulf B, Copie-Bergman C, Delfau-Larue MH, et al.: Nonhepatosplenic gammadelta T-cell lymphoma: a subset of cytotoxic lymphomas with mucosal or skin localization. Blood 91 (5): 1723-31, 1998.
100. Toro JR, Liewehr DJ, Pabby N, et al.: Gamma-delta T-cell phenotype is associated with significantly decreased survival in cutaneous T-cell lymphoma. Blood 101 (9): 3407-12, 2003.
101. Egan LJ, Walsh SV, Stevens FM, et al.: Celiac-associated lymphoma. A single institution experience of 30 cases in the combination chemotherapy era. J Clin Gastroenterol 21 (2): 123-9, 1995.
102. Gale J, Simmonds PD, Mead GM, et al.: Enteropathy-type intestinal T-cell lymphoma: clinical features and treatment of 31 patients in a single center. J Clin Oncol 18 (4): 795-803, 2000.
103. Di Sabatino A, Biagi F, Gobbi PG, et al.: How I treat enteropathy-associated T-cell lymphoma. Blood 119 (11): 2458-68, 2012.
104. Daum S, Ullrich R, Heise W, et al.: Intestinal non-Hodgkin's lymphoma: a multicenter prospective clinical study from the German Study Group on Intestinal non-Hodgkin's Lymphoma. J Clin Oncol 21 (14): 2740-6, 2003.
105. Sieniawski M, Angamuthu N, Boyd K, et al.: Evaluation of enteropathy-associated T-cell lymphoma comparing standard therapies with a novel regimen including autologous stem cell transplantation. Blood 115 (18): 3664-70, 2010.
106. Shimada K, Matsue K, Yamamoto K, et al.: Retrospective analysis of intravascular large B-cell lymphoma treated with rituximab-containing chemotherapy as reported by the IVL study group in Japan. J Clin Oncol 26 (19): 3189-95, 2008.
107. Ponzoni M, Ferreri AJ, Campo E, et al.: Definition, diagnosis, and management of intravascular large B-cell lymphoma: proposals and perspectives from an international consensus meeting. J Clin Oncol 25 (21): 3168-73, 2007.
108. Blum KA, Lozanski G, Byrd JC: Adult Burkitt leukemia and lymphoma. Blood 104 (10): 3009-20, 2004.
109. Onciu M, Schlette E, Zhou Y, et al.: Secondary chromosomal abnormalities predict outcome in pediatric and adult high-stage Burkitt lymphoma. Cancer 107 (5): 1084-92, 2006.
110. Macpherson N, Lesack D, Klasa R, et al.: Small noncleaved, non-Burkitt's (Burkit-Like) lymphoma: cytogenetics predict outcome and reflect clinical presentation. J Clin Oncol 17 (5): 1558-67, 1999.
111. Dave SS, Fu K, Wright GW, et al.: Molecular diagnosis of Burkitt's lymphoma. N Engl J Med 354 (23): 2431-42, 2006.
112. Hummel M, Bentink S, Berger H, et al.: A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N Engl J Med 354 (23): 2419-30, 2006.
113. Salaverria I, Siebert R: The gray zone between Burkitt's lymphoma and diffuse large B-cell lymphoma from a genetics perspective. J Clin Oncol 29 (14): 1835-43, 2011.
114. Longo DL, Duffey PL, Jaffe ES, et al.: Diffuse small noncleaved-cell, non-Burkitt's lymphoma in adults: a high-grade lymphoma responsive to ProMACE-based combination chemotherapy. J Clin Oncol 12 (10): 2153-9, 1994.
115. McMaster ML, Greer JP, Greco FA, et al.: Effective treatment of small-noncleaved-cell lymphoma with high-intensity, brief-duration chemotherapy. J Clin Oncol 9 (6): 941-6, 1991.
116. Thomas DA, Faderl S, O'Brien S, et al.: Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer 106 (7): 1569-80, 2006.
117. Soussain C, Patte C, Ostronoff M, et al.: Small noncleaved cell lymphoma and leukemia in adults. A retrospective study of 65 adults treated with the LMB pediatric protocols. Blood 85 (3): 664-74, 1995.
118. Magrath I, Adde M, Shad A, et al.: Adults and children with small non-cleaved-cell lymphoma have a similar excellent outcome when treated with the same chemotherapy regimen. J Clin Oncol 14 (3): 925-34, 1996.
119. Adde M, Shad A, Venzon D, et al.: Additional chemotherapy agents improve treatment outcome for children and adults with advanced B-cell lymphomas. Semin Oncol 25 (2 Suppl 4): 33-9; discussion 45-8, 1998.
120. Hoelzer D, Ludwig WD, Thiel E, et al.: Improved outcome in adult B-cell acute lymphoblastic leukemia. Blood 87 (2): 495-508, 1996.
121. Lee EJ, Petroni GR, Schiffer CA, et al.: Brief-duration high-intensity chemotherapy for patients with small noncleaved-cell lymphoma or FAB L3 acute lymphocytic leukemia: results of cancer and leukemia group B study 9251. J Clin Oncol 19 (20): 4014-22, 2001.
122. Mead GM, Sydes MR, Walewski J, et al.: An international evaluation of CODOX-M and CODOX-M alternating with IVAC in adult Burkitt's lymphoma: results of United Kingdom Lymphoma Group LY06 study. Ann Oncol 13 (8): 1264-74, 2002.
123. Freedman AS, Takvorian T, Anderson KC, et al.: Autologous bone marrow transplantation in B-cell non-Hodgkin's lymphoma: very low treatment-related mortality in 100 patients in sensitive relapse. J Clin Oncol 8 (5): 784-91, 1990.
124. Sweetenham JW, Pearce R, Philip T, et al.: High-dose therapy and autologous bone marrow transplantation for intermediate and high grade non-Hodgkin's lymphoma in patients aged 55 years and over: results from the European Group for Bone Marrow Transplantation. The EBMT Lymphoma Working Party. Bone Marrow Transplant 14 (6): 981-7, 1994.
125. Rizzieri DA, Johnson JL, Niedzwiecki D, et al.: Intensive chemotherapy with and without cranial radiation for Burkitt leukemia and lymphoma: final results of Cancer and Leukemia Group B Study 9251. Cancer 100 (7): 1438-48, 2004.
126. Morel P, Lepage E, Brice P, et al.: Prognosis and treatment of lymphoblastic lymphoma in adults: a report on 80 patients. J Clin Oncol 10 (7): 1078-85, 1992.
127. Verdonck LF, Dekker AW, de Gast GC, et al.: Autologous bone marrow transplantation for adult poor-risk lymphoblastic lymphoma in first remission. J Clin Oncol 10 (4): 644-6, 1992.
128. Thomas DA, O'Brien S, Cortes J, et al.: Outcome with the hyper-CVAD regimens in lymphoblastic lymphoma. Blood 104 (6): 1624-30, 2004.
129. Sweetenham JW, Santini G, Qian W, et al.: High-dose therapy and autologous stem-cell transplantation versus conventional-dose consolidation/maintenance therapy as postremission therapy for adult patients with lymphoblastic lymphoma: results of a randomized trial of the European Group for Blood and Marrow Transplantation and the United Kingdom Lymphoma Group. J Clin Oncol 19 (11): 2927-36, 2001.
130. Höllsberg P, Hafler DA: Seminars in medicine of the Beth Israel Hospital, Boston. Pathogenesis of diseases induced by human lymphotropic virus type I infection. N Engl J Med 328 (16): 1173-82, 1993.
131. Foss FM, Aquino SL, Ferry JA: Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 10-2003. A 72-year-old man with rapidly progressive leukemia, rash, and multiorgan failure. N Engl J Med 348 (13): 1267-75, 2003.
132. Shimoyama M: Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984-87). Br J Haematol 79 (3): 428-37, 1991.
133. Takasaki Y, Iwanaga M, Imaizumi Y, et al.: Long-term study of indolent adult T-cell leukemia-lymphoma. Blood 115 (22): 4337-43, 2010.
134. Yamada Y, Tomonaga M, Fukuda H, et al.: A new G-CSF-supported combination chemotherapy, LSG15, for adult T-cell leukaemia-lymphoma: Japan Clinical Oncology Group Study 9303. Br J Haematol 113 (2): 375-82, 2001.
135. Fukushima T, Miyazaki Y, Honda S, et al.: Allogeneic hematopoietic stem cell transplantation provides sustained long-term survival for patients with adult T-cell leukemia/lymphoma. Leukemia 19 (5): 829-34, 2005.
136. Katsuya H, Yamanaka T, Ishitsuka K, et al.: Prognostic index for acute- and lymphoma-type adult T-cell leukemia/lymphoma. J Clin Oncol 30 (14): 1635-40, 2012.
137. Itonaga H, Tsushima H, Taguchi J, et al.: Treatment of relapsed adult T-cell leukemia/lymphoma after allogeneic hematopoietic stem cell transplantation: the Nagasaki Transplant Group experience. Blood 121 (1): 219-25, 2013.
138. Ishida T, Hishizawa M, Kato K, et al.: Allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia-lymphoma with special emphasis on preconditioning regimen: a nationwide retrospective study. Blood 120 (8): 1734-41, 2012.
139. Gill PS, Harrington W Jr, Kaplan MH, et al.: Treatment of adult T-cell leukemia-lymphoma with a combination of interferon alfa and zidovudine. N Engl J Med 332 (26): 1744-8, 1995.
140. Matutes E, Taylor GP, Cavenagh J, et al.: Interferon alpha and zidovudine therapy in adult T-cell leukaemia lymphoma: response and outcome in 15 patients. Br J Haematol 113 (3): 779-84, 2001.
141. Hermine O, Allard I, Lévy V, et al.: A prospective phase II clinical trial with the use of zidovudine and interferon-alpha in the acute and lymphoma forms of adult T-cell leukemia/lymphoma. Hematol J 3 (6): 276-82, 2002.
142. Bazarbachi A, Plumelle Y, Carlos Ramos J, et al.: Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol 28 (27): 4177-83, 2010.
143. Bazarbachi A, Suarez F, Fields P, et al.: How I treat adult T-cell leukemia/lymphoma. Blood 118 (7): 1736-45, 2011.
144. Simone CB 2nd, Morris JC, Stewart DM, et al.: Radiation therapy for the management of patients with HTLV-1-associated adult T-cell leukemia/lymphoma. Blood 120 (9): 1816-9, 2012.
145. Pugh WC: Is the working formulation adequate for the classification of the low grade lymphomas? Leuk Lymphoma 10(Suppl): 1-8, 1993.
146. Norton AJ, Matthews J, Pappa V, et al.: Mantle cell lymphoma: natural history defined in a serially biopsied population over a 20-year period. Ann Oncol 6 (3): 249-56, 1995.
147. Zucca E, Roggero E, Pinotti G, et al.: Patterns of survival in mantle cell lymphoma. Ann Oncol 6 (3): 257-62, 1995.
148. Campo E, Raffeld M, Jaffe ES: Mantle-cell lymphoma. Semin Hematol 36 (2): 115-27, 1999.
149. Pérez-Galán P, Dreyling M, Wiestner A: Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood 117 (1): 26-38, 2011.
150. Weisenburger DD, Armitage JO: Mantle cell lymphoma-- an entity comes of age. Blood 87 (11): 4483-94, 1996.
151. Herrmann A, Hoster E, Zwingers T, et al.: Improvement of overall survival in advanced stage mantle cell lymphoma. J Clin Oncol 27 (4): 511-8, 2009.
152. Fisher RI, Dahlberg S, Nathwani BN, et al.: A clinical analysis of two indolent lymphoma entities: mantle cell lymphoma and marginal zone lymphoma (including the mucosa-associated lymphoid tissue and monocytoid B-cell subcategories): a Southwest Oncology Group study. Blood 85 (4): 1075-82, 1995.
153. Majlis A, Pugh WC, Rodriguez MA, et al.: Mantle cell lymphoma: correlation of clinical outcome and biologic features with three histologic variants. J Clin Oncol 15 (4): 1664-71, 1997.
154. Tiemann M, Schrader C, Klapper W, et al.: Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL Network. Br J Haematol 131 (1): 29-38, 2005.
155. Lenz G, Dreyling M, Hoster E, et al.: Immunochemotherapy with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone significantly improves response and time to treatment failure, but not long-term outcome in patients with previously untreated mantle cell lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group (GLSG). J Clin Oncol 23 (9): 1984-92, 2005.
156. Romaguera JE, Fayad L, Rodriguez MA, et al.: High rate of durable remissions after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating with rituximab plus high-dose methotrexate and cytarabine. J Clin Oncol 23 (28): 7013-23, 2005.
157. Witzig TE: Current treatment approaches for mantle-cell lymphoma. J Clin Oncol 23 (26): 6409-14, 2005.
158. Griffiths R, Mikhael J, Gleeson M, et al.: Addition of rituximab to chemotherapy alone as first-line therapy improves overall survival in elderly patients with mantle cell lymphoma. Blood 118 (18): 4808-16, 2011.
159. LaCasce AS, Vandergrift JL, Rodriguez MA, et al.: Comparative outcome of initial therapy for younger patients with mantle cell lymphoma: an analysis from the NCCN NHL Database. Blood 119 (9): 2093-9, 2012.
160. Kluin-Nelemans HC, Hoster E, Hermine O, et al.: Treatment of older patients with mantle-cell lymphoma. N Engl J Med 367 (6): 520-31, 2012.
161. Martin P, Chadburn A, Christos P, et al.: Outcome of deferred initial therapy in mantle-cell lymphoma. J Clin Oncol 27 (8): 1209-13, 2009.
162. Khouri IF, Lee MS, Saliba RM, et al.: Nonablative allogeneic stem-cell transplantation for advanced/recurrent mantle-cell lymphoma. J Clin Oncol 21 (23): 4407-12, 2003.
163. Khouri IF, Romaguera J, Kantarjian H, et al.: Hyper-CVAD and high-dose methotrexate/cytarabine followed by stem-cell transplantation: an active regimen for aggressive mantle-cell lymphoma. J Clin Oncol 16 (12): 3803-9, 1998.
164. Lefrère F, Delmer A, Suzan F, et al.: Sequential chemotherapy by CHOP and DHAP regimens followed by high-dose therapy with stem cell transplantation induces a high rate of complete response and improves event-free survival in mantle cell lymphoma: a prospective study. Leukemia 16 (4): 587-93, 2002.
165. Gopal AK, Rajendran JG, Petersdorf SH, et al.: High-dose chemo-radioimmunotherapy with autologous stem cell support for relapsed mantle cell lymphoma. Blood 99 (9): 3158-62, 2002.
166. Gianni AM, Magni M, Martelli M, et al.: Long-term remission in mantle cell lymphoma following high-dose sequential chemotherapy and in vivo rituximab-purged stem cell autografting (R-HDS regimen). Blood 102 (2): 749-55, 2003.
167. Forstpointner R, Dreyling M, Repp R, et al.: The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 104 (10): 3064-71, 2004.
168. Dreyling M, Lenz G, Hoster E, et al.: Early consolidation by myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL Network. Blood 105 (7): 2677-84, 2005.
169. Geisler CH, Kolstad A, Laurell A, et al.: Long-term progression-free survival of mantle cell lymphoma after intensive front-line immunochemotherapy with in vivo-purged stem cell rescue: a nonrandomized phase 2 multicenter study by the Nordic Lymphoma Group. Blood 112 (7): 2687-93, 2008.
170. Tam CS, Bassett R, Ledesma C, et al.: Mature results of the M. D. Anderson Cancer Center risk-adapted transplantation strategy in mantle cell lymphoma. Blood 113 (18): 4144-52, 2009.
171. Damon LE, Johnson JL, Niedzwiecki D, et al.: Immunochemotherapy and autologous stem-cell transplantation for untreated patients with mantle-cell lymphoma: CALGB 59909. J Clin Oncol 27 (36): 6101-8, 2009.
172. Fisher RI, Bernstein SH, Kahl BS, et al.: Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 24 (30): 4867-74, 2006.
173. O'Connor OA, Moskowitz C, Portlock C, et al.: Patients with chemotherapy-refractory mantle cell lymphoma experience high response rates and identical progression-free survivals compared with patients with relapsed disease following treatment with single agent bortezomib: results of a multicentre Phase 2 clinical trial. Br J Haematol 145 (1): 34-9, 2009.
174. Morrison VA, Dunn DL, Manivel JC, et al.: Clinical characteristics of post-transplant lymphoproliferative disorders. Am J Med 97 (1): 14-24, 1994.
175. Knowles DM, Cesarman E, Chadburn A, et al.: Correlative morphologic and molecular genetic analysis demonstrates three distinct categories of posttransplantation lymphoproliferative disorders. Blood 85 (2): 552-65, 1995.
176. Leblond V, Dhedin N, Mamzer Bruneel MF, et al.: Identification of prognostic factors in 61 patients with posttransplantation lymphoproliferative disorders. J Clin Oncol 19 (3): 772-8, 2001.
177. Ghobrial IM, Habermann TM, Maurer MJ, et al.: Prognostic analysis for survival in adult solid organ transplant recipients with post-transplantation lymphoproliferative disorders. J Clin Oncol 23 (30): 7574-82, 2005.
178. Armitage JM, Kormos RL, Stuart RS, et al.: Posttransplant lymphoproliferative disease in thoracic organ transplant patients: ten years of cyclosporine-based immunosuppression. J Heart Lung Transplant 10 (6): 877-86; discussion 886-7, 1991 Nov-Dec.
179. Evens AM, David KA, Helenowski I, et al.: Multicenter analysis of 80 solid organ transplantation recipients with post-transplantation lymphoproliferative disease: outcomes and prognostic factors in the modern era. J Clin Oncol 28 (6): 1038-46, 2010.
180. Kuehnle I, Huls MH, Liu Z, et al.: CD20 monoclonal antibody (rituximab) for therapy of Epstein-Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood 95 (4): 1502-5, 2000.
181. Shapiro RS, Chauvenet A, McGuire W, et al.: Treatment of B-cell lymphoproliferative disorders with interferon alfa and intravenous gamma globulin. N Engl J Med 318 (20): 1334, 1988.
182. Leblond V, Sutton L, Dorent R, et al.: Lymphoproliferative disorders after organ transplantation: a report of 24 cases observed in a single center. J Clin Oncol 13 (4): 961-8, 1995.
183. Mamzer-Bruneel MF, Lomé C, Morelon E, et al.: Durable remission after aggressive chemotherapy for very late post-kidney transplant lymphoproliferation: A report of 16 cases observed in a single center. J Clin Oncol 18 (21): 3622-32, 2000.
184. Swinnen LJ: Durable remission after aggressive chemotherapy for post-cardiac transplant lymphoproliferation. Leuk Lymphoma 28 (1-2): 89-101, 1997.
185. McCarthy M, Ramage J, McNair A, et al.: The clinical diversity and role of chemotherapy in lymphoproliferative disorder in liver transplant recipients. J Hepatol 27 (6): 1015-21, 1997.
186. Leblond V, Davi F, Charlotte F, et al.: Posttransplant lymphoproliferative disorders not associated with Epstein-Barr virus: a distinct entity? J Clin Oncol 16 (6): 2052-9, 1998.
187. Senderowicz AM, Vitetta E, Headlee D, et al.: Complete sustained response of a refractory, post-transplantation, large B-cell lymphoma to an anti-CD22 immunotoxin. Ann Intern Med 126 (11): 882-5, 1997.
188. Haddad E, Paczesny S, Leblond V, et al.: Treatment of B-lymphoproliferative disorder with a monoclonal anti-interleukin-6 antibody in 12 patients: a multicenter phase 1-2 clinical trial. Blood 97 (6): 1590-7, 2001.
189. Soslow RA, Davis RE, Warnke RA, et al.: True histiocytic lymphoma following therapy for lymphoblastic neoplasms. Blood 87 (12): 5207-12, 1996.
190. Kamel OW, Gocke CD, Kell DL, et al.: True histiocytic lymphoma: a study of 12 cases based on current definition. Leuk Lymphoma 18 (1-2): 81-6, 1995.
191. Nador RG, Cesarman E, Chadburn A, et al.: Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus. Blood 88 (2): 645-56, 1996.

Stage Information for Adult NHL

Stage is important in selecting a treatment for patients with non-Hodgkin lymphoma (NHL). Chest and abdominal computed tomography (CT) scans are usually part of the staging evaluation for all lymphoma patients. The staging system is similar to the staging system used for Hodgkin lymphoma.

Common among patients with NHL is involvement of the following:

  • Noncontiguous lymph nodes.
  • Waldeyer ring.
  • Epitrochlear nodes.
  • Gastrointestinal tract.
  • Extranodal presentations. (A single extranodal site is occasionally the only site of involvement in patients with diffuse lymphoma.)
  • Bone marrow.
  • Liver (especially common in patients with low-grade lymphomas).

Cytologic examination of cerebrospinal fluid may be positive in patients with aggressive NHL. Involvement of hilar and mediastinal lymph nodes is less common than in Hodgkin lymphoma. Mediastinal adenopathy, however, is a prominent feature of lymphoblastic lymphoma and primary mediastinal B-cell lymphoma, entities primarily found in young adults.

The majority of patients with NHL present with advanced (stage III or stage IV) disease that can often be identified with limited staging procedures such as CT scanning and biopsies of the bone marrow and other accessible sites of involvement. Laparoscopic biopsy or laparotomy is not required for staging but may be necessary to establish a diagnosis or histologic type.[1] Positron emission tomography (PET) with fluorine-18-fluorodeoxyglucose can be used for initial staging and for follow-up after therapy as a supplement to CT scanning.[2,3,4,5,6] Interim PET scans after two to four cycles of therapy did not provide reliable prognostic information because of problems of interobserver reproducibility in a large cooperative group trial (ECOG-E344 [NCT00274924]) and lack of difference in outcome between PET-negative and PET-positive/biopsy-negative patients in two prospective trials.[7,8,9]

Staging Subclassification System

Table 2. Anatomic Stage/Prognostic Groupsa

Stage Prognostic Groups
I Involvement of a single lymphatic site (i.e., nodal region, Waldeyer ring, thymus or spleen) (I).
OR
Localized involvement of a single extralymphatic organ or site in the absence of any lymph node involvement (IE) (rare in Hodgkin lymphoma).
II Involvement of two or more lymph node regions on the same side of the diaphragm (II).
OR
Localized involvement of a single extralymphatic organ or site in association with regional lymph node involvement with or without involvement of other lymph node regions on the same side of the diaphragm (IIE). The number of regions involved may be indicated by a subscript Arabic numeral, for example, II3.
III Involvement of lymph node regions on both sides of the diaphragm (III), which also may be accompanied by extralymphatic extension in association with adjacent lymph node involvement (IIIE) or by involvement of the spleen (IIIS) or both (IIIE, IIIS). Splenic involvement is designated by the letter S.
IV Diffuse or disseminated involvement of one or more extralymphatic organs, with or without associated lymph node involvement.
OR
Isolated extralymphatic organ involvement in the absence of adjacent regional lymph node involvement, but in conjunction with disease in distant site(s). Stage IV includes any involvement of the liver or bone marrow, lungs (other than by direct extension from another site), or cerebrospinal fluid.
a Reprinted with permission from American Joint Committee on Cancer: Hodgkin and non-Hodgkin lymphomas. In Edge SB, Byrd DR, Compton CC, et al., eds.: AJCC Cancer Staging Manual. 7th ed. New York, NY: Springer, 2010, pp 607–11.

The Ann Arbor staging system is commonly used for patients with NHL.[10,11] In this system, stage I, stage II, stage III, and stage IV adult NHL can be subclassified into A and B categories: B for those with well-defined generalized symptoms and A for those without such symptoms. The B designation is given to patients with any of the following symptoms:

  • Unexplained loss of more than 10% of body weight in the 6 months before diagnosis.
  • Unexplained fever with temperatures above 38°C.
  • Drenching night sweats.

Occasionally, specialized staging systems are used. The physician should be aware of the system used in a specific report.

The E designation is used when extranodal lymphoid malignancies arise in tissues separate from, but near, the major lymphatic aggregates. Stage IV refers to disease that is diffusely spread throughout an extranodal site, such as the liver. If pathologic proof of involvement of one or more extralymphatic sites has been documented, the symbol for the site of involvement, followed by a plus sign (+), is listed.

Table 3. Notation to Identify Specific Sites

N = nodes H = liver L = lung M = bone marrow
S = spleen P = pleura O = bone D = skin

Current practice assigns a clinical stage (CS) based on the findings of the clinical evaluation and a pathologic stage (PS) based on the findings made as a result of invasive procedures beyond the initial biopsy.

For example, on percutaneous biopsy, a patient with inguinal adenopathy and a positive lymphangiogram without systemic symptoms might be found to have involvement of the liver and bone marrow. The precise stage of such a patient would be CS IIA, PS IVA(H+)(M+).

A number of other factors that are not included in the above staging system are important for the staging and prognosis of patients with NHL. These factors include the following:

  • Age.
  • Performance status.
  • Tumor size.
  • Lactate dehydrogenase (LDH) values.
  • The number of extranodal sites.

To identify subgroups of patients most likely to relapse, an international prognostic index was compiled for 2,031 patients with aggressive NHL.[12] After validation by several cancer centers,[13,14] the major cooperative groups have used this index in the design of new clinical trials. The model is simple to apply, reproducible, and predicts outcome even after patients have achieved a complete remission. The model identifies five significant risk factors prognostic of overall survival (OS):

  • Age (<60 years vs. >60 years).
  • Serum LDH (normal vs. elevated).
  • Performance status (0 or 1 vs. 2–4).
  • Stage (stage I or stage II vs. stage III or stage IV).
  • Extranodal site involvement (0 or 1 vs. 2–4).

Patients with two or more risk factors have a less than 50% chance of relapse-free survival and OS at 5 years. This study also identifies patients at high risk of relapse based on specific sites of involvement, including bone marrow, central nervous system, liver, lung, and spleen. The bcl-2 gene and rearrangement of the myc gene or dual overexpression of the myc gene, or both, confer a particularly poor prognosis.[15,16,17,18] Patients at high risk of relapse may benefit from consolidation therapy or other approaches under clinical evaluation.[12] Molecular profiles of gene expression using DNA microarrays may help to stratify patients in the future for therapies directed at specific targets and to better predict survival after standard chemotherapy.[19,20]

References:

1. Mann GB, Conlon KC, LaQuaglia M, et al.: Emerging role of laparoscopy in the diagnosis of lymphoma. J Clin Oncol 16 (5): 1909-15, 1998.
2. Zijlstra JM, Hoekstra OS, Raijmakers PG, et al.: 18FDG positron emission tomography versus 67Ga scintigraphy as prognostic test during chemotherapy for non-Hodgkin's lymphoma. Br J Haematol 123 (3): 454-62, 2003.
3. Juweid ME, Cheson BD: Role of positron emission tomography in lymphoma. J Clin Oncol 23 (21): 4577-80, 2005.
4. Juweid ME, Stroobants S, Hoekstra OS, et al.: Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 25 (5): 571-8, 2007.
5. Cheson BD, Pfistner B, Juweid ME, et al.: Revised response criteria for malignant lymphoma. J Clin Oncol 25 (5): 579-86, 2007.
6. Terasawa T, Lau J, Bardet S, et al.: Fluorine-18-fluorodeoxyglucose positron emission tomography for interim response assessment of advanced-stage Hodgkin's lymphoma and diffuse large B-cell lymphoma: a systematic review. J Clin Oncol 27 (11): 1906-14, 2009.
7. Horning SJ, Juweid ME, Schöder H, et al.: Interim positron emission tomography scans in diffuse large B-cell lymphoma: an independent expert nuclear medicine evaluation of the Eastern Cooperative Oncology Group E3404 study. Blood 115 (4): 775-7; quiz 918, 2010.
8. Moskowitz CH, Schöder H, Teruya-Feldstein J, et al.: Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in Advanced-stage diffuse large B-Cell lymphoma. J Clin Oncol 28 (11): 1896-903, 2010.
9. Pregno P, Chiappella A, Bellò M, et al.: Interim 18-FDG-PET/CT failed to predict the outcome in diffuse large B-cell lymphoma patients treated at the diagnosis with rituximab-CHOP. Blood 119 (9): 2066-73, 2012.
10. Lymphoid neoplasms. In: Edge SB, Byrd DR, Compton CC, et al., eds.: AJCC Cancer Staging Manual. 7th ed. New York, NY: Springer, 2010, pp 599-628.
11. National Cancer Institute sponsored study of classifications of non-Hodgkin's lymphomas: summary and description of a working formulation for clinical usage. The Non-Hodgkin's Lymphoma Pathologic Classification Project. Cancer 49 (10): 2112-35, 1982.
12. A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. N Engl J Med 329 (14): 987-94, 1993.
13. Salles G, de Jong D, Xie W, et al.: Prognostic significance of immunohistochemical biomarkers in diffuse large B-cell lymphoma: a study from the Lunenburg Lymphoma Biomarker Consortium. Blood 117 (26): 7070-8, 2011.
14. Advani RH, Chen H, Habermann TM, et al.: Comparison of conventional prognostic indices in patients older than 60 years with diffuse large B-cell lymphoma treated with R-CHOP in the US Intergroup Study (ECOG 4494, CALGB 9793): consideration of age greater than 70 years in an elderly prognostic index (E-IPI). Br J Haematol 151 (2): 143-51, 2010.
15. Cuccuini W, Briere J, Mounier N, et al.: MYC+ diffuse large B-cell lymphoma is not salvaged by classical R-ICE or R-DHAP followed by BEAM plus autologous stem cell transplantation. Blood 119 (20): 4619-24, 2012.
16. Johnson NA, Slack GW, Savage KJ, et al.: Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 30 (28): 3452-9, 2012.
17. Green TM, Young KH, Visco C, et al.: Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 30 (28): 3460-7, 2012.
18. Horn H, Ziepert M, Becher C, et al.: MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood 121 (12): 2253-63, 2013.
19. Rosenwald A, Wright G, Chan WC, et al.: The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346 (25): 1937-47, 2002.
20. Abramson JS, Shipp MA: Advances in the biology and therapy of diffuse large B-cell lymphoma: moving toward a molecularly targeted approach. Blood 106 (4): 1164-74, 2005.

Treatment Option Overview for Adult NHL

Treatment of non-Hodgkin lymphoma (NHL) depends on the histologic type and stage. Many of the improvements in survival have been made using clinical trials (experimental therapy) that have attempted to improve on the best available accepted therapy (conventional or standard therapy).

In asymptomatic patients with indolent forms of advanced NHL, treatment may be deferred until the patient becomes symptomatic as the disease progresses. When treatment is deferred, the clinical course of patients with indolent NHL varies; frequent and careful observation is required so that effective treatment can be initiated when the clinical course of the disease accelerates. Some patients have a prolonged indolent course, but others have disease that rapidly evolves into more aggressive types of NHL that require immediate treatment.

Radiation techniques differ somewhat from those used in the treatment of Hodgkin lymphoma. The dose of radiation therapy usually varies from 25 Gy to 50 Gy and is dependent on factors that include the histologic type of lymphoma, the patient's stage and overall condition, the goal of treatment (curative or palliative), the proximity of sensitive surrounding organs, and whether the patient is being treated with radiation therapy alone or in combination with chemotherapy. Given the patterns of disease presentations and relapse, treatment may need to include unusual sites such as Waldeyer ring, epitrochlear, or mesenteric nodes. The associated morbidity of the treatment must be considered carefully. The majority of patients who receive radiation are usually treated on only one side of the diaphragm. Localized presentations of extranodal NHL may be treated with involved-field techniques with significant (>50%) success.

Table 4. Standard Treatment Options for NHL

Stage Standard Treatment Options
CNS = central nervous system; CHOP = cyclophosphamide, doxorubicin, vincristine, and prednisone; IF-XRT = involved-field radiation therapy; NHL = non-Hodgkin lymphoma; R-CHOP = rituximab, an anti-CD20 monoclonal antibody, cyclophosphamide, doxorubicin, vincristine, and prednisone.
Indolent, Stage I and Contiguous Stage II Adult NHL Radiation therapy
Rituximab with or without chemotherapy
Watchful waiting
Other therapies as designated for patients with advanced-stage disease
Indolent, Noncontiguous Stage II/III/IV Adult NHL Watchful waiting for asymptomatic patients
Rituximab
Purine nucleoside analogs
Alkylating agents (with or without steroids)
Combination chemotherapy
Yttrium-90 labeled ibritumomab tiuxetan and iodine-131-labeled tositumomab
Maintenance rituximab
Indolent, Recurrent Adult NHL Chemotherapy (single agent or combination)
Rituximab
Lenalidomide
Radiolabeled anti-CD20 monoclonal antibodies
Palliative radiation therapy
Aggressive, Stage I and Contiguous Stage II Adult NHL R-CHOP with or without IF-XRT
Aggressive, Noncontiguous Stage II/III/IV Adult NHL R-CHOP
Other combination chemotherapy
Adult Lymphoblastic Lymphoma Intensive therapy
Radiation therapy
Diffuse, Small, Noncleaved-Cell/Burkitt Lymphoma Aggressive multidrug regimens
Central nervous system (CNS) prophylaxis
Aggressive, Recurrent Adult NHL Bone marrow or stem cell transplantation
Re-treatment with standard agents
Palliative radiation therapy

Even though standard treatment in patients with lymphomas can cure a significant fraction, numerous clinical trials that explore improvements in treatment are in progress. If possible, patients should be included in these studies. Standardized guidelines for response assessment have been suggested for use in clinical trials.[1]

Aggressive lymphomas are increasingly seen in human immunodeficiency virus (HIV)-positive patients; treatment of these patients requires special consideration. (Refer to the PDQ summary on AIDS-Related Lymphoma Treatment for more information.) In addition to screening for HIV among patients with aggressive lymphomas, active hepatitis B or hepatitis C should be assessed prior to treatment with rituximab and/or chemotherapy.[2]

Several unusual presentations of lymphoma occur that often require somewhat modified approaches to staging and therapy. The reader is referred to reviews for a more detailed description of extranodal presentations in the gastrointestinal system,[3,4,5,6,7,8,9,10,11] thyroid,[12,13] spleen,[14] testis,[15,16] paranasal sinuses,[17,18,19,20] bone,[21,22] orbit,[23,24,25,26,27] and skin.[28,29,30,31,32,33,34,35,36,37]

(Refer to the PDQ summary on Primary CNS Lymphoma Treatment for more information.)

References:

1. Cheson BD, Horning SJ, Coiffier B, et al.: Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol 17 (4): 1244, 1999.
2. Niitsu N, Hagiwara Y, Tanae K, et al.: Prospective analysis of hepatitis B virus reactivation in patients with diffuse large B-cell lymphoma after rituximab combination chemotherapy. J Clin Oncol 28 (34): 5097-100, 2010.
3. Maor MH, Velasquez WS, Fuller LM, et al.: Stomach conservation in stages IE and IIE gastric non-Hodgkin's lymphoma. J Clin Oncol 8 (2): 266-71, 1990.
4. Salles G, Herbrecht R, Tilly H, et al.: Aggressive primary gastrointestinal lymphomas: review of 91 patients treated with the LNH-84 regimen. A study of the Groupe d'Etude des Lymphomes Agressifs. Am J Med 90 (1): 77-84, 1991.
5. Taal BG, Burgers JM, van Heerde P, et al.: The clinical spectrum and treatment of primary non-Hodgkin's lymphoma of the stomach. Ann Oncol 4 (10): 839-46, 1993.
6. Tondini C, Giardini R, Bozzetti F, et al.: Combined modality treatment for primary gastrointestinal non-Hodgkin's lymphoma: the Milan Cancer Institute experience. Ann Oncol 4 (10): 831-7, 1993.
7. d'Amore F, Brincker H, Grønbaek K, et al.: Non-Hodgkin's lymphoma of the gastrointestinal tract: a population-based analysis of incidence, geographic distribution, clinicopathologic presentation features, and prognosis. Danish Lymphoma Study Group. J Clin Oncol 12 (8): 1673-84, 1994.
8. Haim N, Leviov M, Ben-Arieh Y, et al.: Intermediate and high-grade gastric non-Hodgkin's lymphoma: a prospective study of non-surgical treatment with primary chemotherapy, with or without radiotherapy. Leuk Lymphoma 17 (3-4): 321-6, 1995.
9. Koch P, del Valle F, Berdel WE, et al.: Primary gastrointestinal non-Hodgkin's lymphoma: I. Anatomic and histologic distribution, clinical features, and survival data of 371 patients registered in the German Multicenter Study GIT NHL 01/92. J Clin Oncol 19 (18): 3861-73, 2001.
10. Koch P, del Valle F, Berdel WE, et al.: Primary gastrointestinal non-Hodgkin's lymphoma: II. Combined surgical and conservative or conservative management only in localized gastric lymphoma--results of the prospective German Multicenter Study GIT NHL 01/92. J Clin Oncol 19 (18): 3874-83, 2001.
11. Koch P, Probst A, Berdel WE, et al.: Treatment results in localized primary gastric lymphoma: data of patients registered within the German multicenter study (GIT NHL 02/96). J Clin Oncol 23 (28): 7050-9, 2005.
12. Blair TJ, Evans RG, Buskirk SJ, et al.: Radiotherapeutic management of primary thyroid lymphoma. Int J Radiat Oncol Biol Phys 11 (2): 365-70, 1985.
13. Junor EJ, Paul J, Reed NS: Primary non-Hodgkin's lymphoma of the thyroid. Eur J Surg Oncol 18 (4): 313-21, 1992.
14. Morel P, Dupriez B, Gosselin B, et al.: Role of early splenectomy in malignant lymphomas with prominent splenic involvement (primary lymphomas of the spleen). A study of 59 cases. Cancer 71 (1): 207-15, 1993.
15. Zucca E, Conconi A, Mughal TI, et al.: Patterns of outcome and prognostic factors in primary large-cell lymphoma of the testis in a survey by the International Extranodal Lymphoma Study Group. J Clin Oncol 21 (1): 20-7, 2003.
16. Vitolo U, Chiappella A, Ferreri AJ, et al.: First-line treatment for primary testicular diffuse large B-cell lymphoma with rituximab-CHOP, CNS prophylaxis, and contralateral testis irradiation: final results of an international phase II trial. J Clin Oncol 29 (20): 2766-72, 2011.
17. Liang R, Todd D, Chan TK, et al.: Treatment outcome and prognostic factors for primary nasal lymphoma. J Clin Oncol 13 (3): 666-70, 1995.
18. Cheung MM, Chan JK, Lau WH, et al.: Primary non-Hodgkin's lymphoma of the nose and nasopharynx: clinical features, tumor immunophenotype, and treatment outcome in 113 patients. J Clin Oncol 16 (1): 70-7, 1998.
19. Hausdorff J, Davis E, Long G, et al.: Non-Hodgkin's lymphoma of the paranasal sinuses: clinical and pathological features, and response to combined-modality therapy. Cancer J Sci Am 3 (5): 303-11, 1997 Sep-Oct.
20. Sasai K, Yamabe H, Kokubo M, et al.: Head-and-neck stages I and II extranodal non-Hodgkin's lymphomas: real classification and selection for treatment modality. Int J Radiat Oncol Biol Phys 48 (1): 153-60, 2000.
21. Ferreri AJ, Reni M, Ceresoli GL, et al.: Therapeutic management with adriamycin-containing chemotherapy and radiotherapy of monostotic and polyostotic primary non-Hodgkin's lymphoma of bone in adults. Cancer Invest 16 (8): 554-61, 1998.
22. Dubey P, Ha CS, Besa PC, et al.: Localized primary malignant lymphoma of bone. Int J Radiat Oncol Biol Phys 37 (5): 1087-93, 1997.
23. Martinet S, Ozsahin M, Belkacémi Y, et al.: Outcome and prognostic factors in orbital lymphoma: a Rare Cancer Network study on 90 consecutive patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 55 (4): 892-8, 2003.
24. Uno T, Isobe K, Shikama N, et al.: Radiotherapy for extranodal, marginal zone, B-cell lymphoma of mucosa-associated lymphoid tissue originating in the ocular adnexa: a multiinstitutional, retrospective review of 50 patients. Cancer 98 (4): 865-71, 2003.
25. Sjö LD, Ralfkiaer E, Juhl BR, et al.: Primary lymphoma of the lacrimal sac: an EORTC ophthalmic oncology task force study. Br J Ophthalmol 90 (8): 1004-9, 2006.
26. Stefanovic A, Lossos IS: Extranodal marginal zone lymphoma of the ocular adnexa. Blood 114 (3): 501-10, 2009.
27. Sjö LD: Ophthalmic lymphoma: epidemiology and pathogenesis. Acta Ophthalmol 87 Thesis 1: 1-20, 2009.
28. Geelen FA, Vermeer MH, Meijer CJ, et al.: bcl-2 protein expression in primary cutaneous large B-cell lymphoma is site-related. J Clin Oncol 16 (6): 2080-5, 1998.
29. Pandolfino TL, Siegel RS, Kuzel TM, et al.: Primary cutaneous B-cell lymphoma: review and current concepts. J Clin Oncol 18 (10): 2152-68, 2000.
30. Sarris AH, Braunschweig I, Medeiros LJ, et al.: Primary cutaneous non-Hodgkin's lymphoma of Ann Arbor stage I: preferential cutaneous relapses but high cure rate with doxorubicin-based therapy. J Clin Oncol 19 (2): 398-405, 2001.
31. Grange F, Bekkenk MW, Wechsler J, et al.: Prognostic factors in primary cutaneous large B-cell lymphomas: a European multicenter study. J Clin Oncol 19 (16): 3602-10, 2001.
32. Mirza I, Macpherson N, Paproski S, et al.: Primary cutaneous follicular lymphoma: an assessment of clinical, histopathologic, immunophenotypic, and molecular features. J Clin Oncol 20 (3): 647-55, 2002.
33. Smith BD, Glusac EJ, McNiff JM, et al.: Primary cutaneous B-cell lymphoma treated with radiotherapy: a comparison of the European Organization for Research and Treatment of Cancer and the WHO classification systems. J Clin Oncol 22 (4): 634-9, 2004.
34. Willemze R, Jaffe ES, Burg G, et al.: WHO-EORTC classification for cutaneous lymphomas. Blood 105 (10): 3768-85, 2005.
35. El-Helw L, Goodwin S, Slater D, et al.: Primary B-cell lymphoma of the skin: the Sheffield Lymphoma Group Experience (1984-2003). Int J Oncol 25 (5): 1453-8, 2004.
36. Zinzani PL, Quaglino P, Pimpinelli N, et al.: Prognostic factors in primary cutaneous B-cell lymphoma: the Italian Study Group for Cutaneous Lymphomas. J Clin Oncol 24 (9): 1376-82, 2006.
37. Senff NJ, Noordijk EM, Kim YH, et al.: European Organization for Research and Treatment of Cancer and International Society for Cutaneous Lymphoma consensus recommendations for the management of cutaneous B-cell lymphomas. Blood 112 (5): 1600-9, 2008.

Treatment for Indolent, Stage I and Contiguous Stage II Adult NHL

Although localized presentations are uncommon in non-Hodgkin lymphoma (NHL), the goal of treatment should be to cure the disease in patients who are shown to have truly localized occurrence after undergoing appropriate staging procedures.

Standard Treatment Options for Indolent, Stage I and Contiguous Stage II Adult NHL

Standard treatment options for indolent, stage I and contiguous stage II adult NHL include the following:

1.Radiation therapy.
2.Rituximab with or without chemotherapy.
3.Watchful waiting.
4.Other therapies as designated for patients with advanced-stage disease.

The National Lymphocare Study identified 471 patients with stage I follicular lymphoma. Of those patients, 206 were rigorously staged with a bone marrow aspirate and biopsy, and computed tomography (CT) scans or positive-emission tomography (PET-CT) scans.[1] Nonrandomized treatments included radiation therapy (27%), rituximab-chemotherapy (R-chemotherapy) (28%), watchful waiting (17%), R-chemotherapy plus radiation therapy (13%), and rituximab alone (12%), although more than one-third of the patients started with expectant therapy. With a median follow-up of 57 months, progression-free survival favored R-chemotherapy or R-chemotherapy plus radiation therapy, but overall survival was nearly identical, all over 90%.[1][Level of evidence: 3iiiD] Clinical trials are required to answer questions such as:[2]

  • If the PET-CT scan is clear after excisional biopsy, is watchful waiting or radiation therapy preferred?
  • Should rituximab be added to radiation therapy for stage I follicular lymphoma?
  • Is there any role for R-chemotherapy plus radiation therapy?

Radiation therapy

Long-term disease control within radiation fields can be achieved in a significant number of patients with indolent stage I or stage II NHL by using dosages of radiation that usually range from 25 Gy to 40 Gy to involved sites or to extended fields that cover adjacent nodal sites.[3,4,5,6,7] Almost half of all patients treated with radiation therapy alone will relapse out-of-field within 10 years.[8]

Rituximab with or without chemotherapy

For symptomatic patients who require therapy, when radiation therapy is contraindicated or when an alternative treatment is preferred, rituximab with or without chemotherapy can be employed (as outlined below for more advanced-stage patients). The value of adjuvant treatment with radiation to decrease relapse, plus rituximab (an anti-CD20 monoclonal antibody) either alone or in combination with chemotherapy, has been extrapolated from trials of patients with advanced-stage disease and has not been confirmed.[9,10]

Watchful waiting

Watchful waiting can be considered for asymptomatic patients.[11] Watchful waiting has never been compared with upfront radiation therapy in a prospective randomized trial; a retrospective analysis of the Surveillance, Epidemiology and End Results Program (SEER) database over 30 years showed improved outcomes for upfront radiation therapy.[12]

Other therapies as designated for patients with advanced-stage disease

Patients with involvement not encompassable by radiation therapy are treated as outlined for patients with stage III or stage IV low-grade lymphoma.

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with indolent, stage I adult non-Hodgkin lymphoma and indolent, contiguous stage II adult non-Hodgkin lymphoma. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References:

1. Friedberg JW, Byrtek M, Link BK, et al.: Effectiveness of first-line management strategies for stage I follicular lymphoma: analysis of the National LymphoCare Study. J Clin Oncol 30 (27): 3368-75, 2012.
2. Montoto S: Management of localized-stage follicular lymphoma: changing the paradigm? J Clin Oncol 30 (27): 3328-9, 2012.
3. Mac Manus MP, Hoppe RT: Is radiotherapy curative for stage I and II low-grade follicular lymphoma? Results of a long-term follow-up study of patients treated at Stanford University. J Clin Oncol 14 (4): 1282-90, 1996.
4. Vaughan Hudson B, Vaughan Hudson G, MacLennan KA, et al.: Clinical stage 1 non-Hodgkin's lymphoma: long-term follow-up of patients treated by the British National Lymphoma Investigation with radiotherapy alone as initial therapy. Br J Cancer 69 (6): 1088-93, 1994.
5. Denham JW, Denham E, Dear KB, et al.: The follicular non-Hodgkin's lymphomas--I. The possibility of cure. Eur J Cancer 32A (3): 470-9, 1996.
6. Haas RL, Poortmans P, de Jong D, et al.: High response rates and lasting remissions after low-dose involved field radiotherapy in indolent lymphomas. J Clin Oncol 21 (13): 2474-80, 2003.
7. Guckenberger M, Alexandrow N, Flentje M: Radiotherapy alone for stage I-III low grade follicular lymphoma: long-term outcome and comparison of extended field and total nodal irradiation. Radiat Oncol 7: 103, 2012.
8. Guadagnolo BA, Li S, Neuberg D, et al.: Long-term outcome and mortality trends in early-stage, Grade 1-2 follicular lymphoma treated with radiation therapy. Int J Radiat Oncol Biol Phys 64 (3): 928-34, 2006.
9. Kelsey SM, Newland AC, Hudson GV, et al.: A British National Lymphoma Investigation randomised trial of single agent chlorambucil plus radiotherapy versus radiotherapy alone in low grade, localised non-Hodgkins lymphoma. Med Oncol 11 (1): 19-25, 1994.
10. Seymour JF, Pro B, Fuller LM, et al.: Long-term follow-up of a prospective study of combined modality therapy for stage I-II indolent non-Hodgkin's lymphoma. J Clin Oncol 21 (11): 2115-22, 2003.
11. Advani R, Rosenberg SA, Horning SJ: Stage I and II follicular non-Hodgkin's lymphoma: long-term follow-up of no initial therapy. J Clin Oncol 22 (8): 1454-9, 2004.
12. Pugh TJ, Ballonoff A, Newman F, et al.: Improved survival in patients with early stage low-grade follicular lymphoma treated with radiation: a Surveillance, Epidemiology, and End Results database analysis. Cancer 116 (16): 3843-51, 2010.

Treatment for Indolent, Noncontiguous Stage II / III / IV Adult NHL

Optimal treatment of advanced stages of low-grade non-Hodgkin lymphoma (NHL) is controversial because of low cure rates with the current therapeutic options. Numerous clinical trials are in progress to settle treatment issues, and patients should be urged to participate. The rate of relapse is fairly constant over time, even in patients who have achieved complete response to treatment. Indeed, relapse may occur many years after treatment. Currently, no randomized trials guide clinicians about the initial choice of watchful waiting, rituximab, nucleoside analogs, alkylating agents, combination chemotherapy, radiolabeled monoclonal antibodies, or combinations of these options.[1]; [2][Level of evidence: 1iiDiii]

For patients with indolent, noncontiguous stage II and stage III non-Hodgkin lymphoma, central lymphatic radiation therapy has been proposed but is not usually recommended as a form of treatment.[3,4]

Numerous prospective clinical trials of interferon-alpha, including SWOG-8809, have shown no consistent benefit; the role of interferon in patients with indolent lymphoma remains controversial.[5,6,7,8,9,10,11,12,13,14,15,16]

Standard Treatment Options for Indolent, Noncontiguous Stage II/III/IV Adult NHL

Standard treatment options for indolent, noncontiguous stage II/III/IV adult NHL include the following:

1.Watchful waiting for asymptomatic patients.
2.Rituximab.
3.Purine nucleoside analogs.
4.Alkylating agents (with or without steroids).
5.Combination chemotherapy.
6.Yttrium-90-labeled ibritumomab tiuxetan and iodine-131-labeled tositumomab.
7.Maintenance rituximab.

Watchful waiting for asymptomatic patients

The rate of relapse is fairly constant over time, even in patients who have achieved complete responses to treatment. Indeed, relapse may occur many years after treatment. In this category, deferred treatment (i.e., watchful waiting until the patient becomes symptomatic before initiating treatment) should be considered.[2,17,18,19]

Evidence (watchful waiting):

1.Three randomized trials compared watchful waiting with immediate chemotherapy.[18,20]; [21][Level of evidence: 1iiA]
  • All three trials showed no difference in cause-specific or overall survival (OS).
  • For patients randomly assigned to watchful waiting, the median time to require therapy was 2 to 3 years and one-third of patients never required treatment with watchful waiting (half died of other causes and half remained progression-free after 10 years).

Rituximab

Rituximab may be considered as first-line therapy, either alone or in combination with other agents.

  • Rituximab alone, as was shown in the ECOG-E4402 (NCT00075946) trial, for example.[22,23,24,25,26]
  • R-Bendamustine: rituximab + bendamustine.[27]
  • R-F: rituximab + fludarabine.[28]
  • R-CVP: rituximab + cyclophosphamide + vincristine + prednisone.[29,30]
  • R-CHOP: rituximab + cyclophosphamide + doxorubicin + vincristine + prednisone.[31,32,33]
  • R-FM: rituximab + fludarabine + mitoxantrone.[34]
  • R-FCM: rituximab + fludarabine + cyclophosphamide + mitoxantrone.[35]

Standard therapy includes rituximab, an anti-CD20 monoclonal antibody, either alone or in combination with purine nucleoside analogs such as fludarabine or 2-chlorodeoxyadenosine, alkylating agents (with or without steroids), or combination chemotherapy.

Evidence (rituximab):

  • Four randomized, prospective studies of previously untreated patients (involving more than 1,300 patients) and one Cochrane meta-analysis including both untreated and previously treated patients (involving almost 1,000 patients) have compared rituximab plus combination chemotherapy with chemotherapy alone.[30,33,36]; [37,38][Level of evidence: 1iiA]
    • Rituximab plus chemotherapy was superior in terms of event-free survival or progression-free survival (PFS) (ranging from 2–3 years) in all of the studies and in terms of OS in all but one study (absolute benefit ranging from 6%–13% at 4 years, P < .04 and hazard ratio [HR] = 0.63 [0.51–0.79] for the meta-analysis).
    • All of these trials were performed in symptomatic patients who required therapy. These results do not negate watchful waiting when appropriate.
    • FDG-PET-CT (fluorine-18-fluorodeoxyglucose–positron-emission tomography–computed tomography) scan status at the completion of rituximab plus chemotherapy induction therapy is strongly predictive of outcome. It is not yet known if acting on the results of the scans translates into better outcomes.[39,40]

Purine nucleoside analogs

  • Fludarabine.[1,41,42]
  • 2-chlorodeoxyadenosine.[43,44]

Alkylating agents (with or without steroids)

  • Cyclophosphamide (oral or intravenous).[45]
  • Chlorambucil (oral).

Combination chemotherapy

  • CVP: cyclophosphamide + vincristine + prednisone.[1,46]
  • CVP followed by rituximab maintenance.[47]
  • C-MOPP: cyclophosphamide + vincristine + procarbazine + prednisone.[48,49]
  • CHOP: cyclophosphamide + doxorubicin + vincristine + prednisone.[45,50]
  • FND: fludarabine + mitoxantrone +/- dexamethasone, as evidenced in the SWOG-9501 trial, for example.[51,52]

Yttrium-90-labeled ibritumomab tiuxetan and iodine-131-labeled tositumomab

Yttrium-90-labeled ibritumomab tiuxetan and iodine-131-labeled tositumomab are available for previously untreated and relapsing patients with minimal (<25%) or no marrow involvement with lymphoma.[53,54,55] In a randomized, prospective trial, 554 patients with previously untreated advanced-stage follicular lymphoma received either R-CHOP times six cycles or CHOP times six cycles followed by I-131 tositumomab radioimmunotherapy (RIT); with a median follow-up of 4.9 years, there was no significant difference between the PFS and OS (2-year OS, R-CHOP, 97%; CHOP-RIT, 93%; P = .08).[56][Level of evidence: 1iiD] Because a significant prolongation of PFS was seen for R-CHOP followed by rituximab maintenance compared with R-CHOP alone,[57] this lack of benefit for CHOP-RIT was particularly disappointing. A trial compared rituximab-chemotherapy (R-chemotherapy) followed by rituxan maintenance or R-chemotherapy followed by RIT versus R-chemotherapy followed by rituxan maintenance and RIT (SWOG-0801).[58]

Maintenance rituximab

Evidence (maintenance rituximab):

1.In a prospective randomized trial of 465 patients with relapsed follicular lymphoma, responders to R-CHOP or CHOP were further randomly assigned to rituximab maintenance (one dose every 3 months for 2 years) or no maintenance.[59][Level of evidence: 1iiDiii]
  • At 6 years' median follow-up, rituximab maintenance was better for median PFS (44 months vs. 16 months, P < .001) and borderline for 5-year OS (74% vs. 64%, P = .07).
  • This benefit for maintenance was evident even for patients who received rituximab during induction therapy. Most patients in both arms received extensive rituximab during post-protocol salvage treatment.
2.In the PRIMA study, 1,019 high-risk patients who required treatment achieved complete or partial response after induction therapy with immunochemotherapy (usually R-CHOP) and were then randomly assigned to 2 years of maintenance rituximab versus no maintenance.[57]
  • With a median follow-up of 36 months, PFS favored rituximab maintenance 74.9% to 57.6% (HR, 0.56; 95% confidence interval [CI], 0.44–0.68; P <.0001) but with no difference in OS.
3.A meta-analysis of 2,586 patients with follicular lymphoma in nine randomized clinical trials that compared rituximab maintenance with no maintenance showed improved OS for rituximab maintenance in previously treated patients (HRdeath, 0.72; 95% CI, 0.57–0.91).[60][Level of evidence: 1iiA]

Many questions remain about rituximab maintenance, particularly about truncating therapy at 2 years and long-term safety and efficacy. The most salient question is whether a strategy of observation after induction with rituximab therapy at time of symptomatic progression is equivalent or superior to mandated rituximab maintenance.[61]

Treatment Options Under Clinical Evaluation for Indolent, Noncontiguous Stage II/III/IV Adult NHL

Since none of the standard therapies listed above are curative for advanced-stage disease, innovative approaches are under clinical evaluation. The approaches include intensive therapy with chemotherapy and total-body irradiation (TBI) followed by autologous or allogeneic bone marrow transplantation (BMT) or peripheral stem cell transplantation (PSCT), and the use of idiotype vaccines and radiolabeled monoclonal antibodies.

1.Intensive therapy with chemotherapy with or without TBI or high-dose radioimmunotherapy followed by autologous or allogeneic BMT or PSCT is under clinical evaluation.[62,63,64,65,66,67,68,69,70,71]
2.Phase III trials comparing chemotherapy alone versus chemotherapy followed by anti-idiotype vaccine.[72,73,74]
3.Extended-field radiation therapy (stage III patients only).[75]
4.Ofatumumab—human anti-CD20 monoclonal antibody.[76]
5.Short-course low-dose, palliative radiation therapy (2 × 2 Gy).[77,78]

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with indolent, noncontiguous stage II adult non-Hodgkin lymphoma, indolent, stage III adult non-Hodgkin lymphoma and indolent, stage IV adult non-Hodgkin lymphoma. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References:

1. Hagenbeek A, Eghbali H, Monfardini S, et al.: Phase III intergroup study of fludarabine phosphate compared with cyclophosphamide, vincristine, and prednisone chemotherapy in newly diagnosed patients with stage III and IV low-grade malignant Non-Hodgkin's lymphoma. J Clin Oncol 24 (10): 1590-6, 2006.
2. Gribben JG: How I treat indolent lymphoma. Blood 109 (11): 4617-26, 2007.
3. Jacobs JP, Murray KJ, Schultz CJ, et al.: Central lymphatic irradiation for stage III nodular malignant lymphoma: long-term results. J Clin Oncol 11 (2): 233-8, 1993.
4. Mendenhall NP, Million RR: Comprehensive lymphatic irradiation for stage II-III non-Hodgkin's lymphoma. Am J Clin Oncol 12 (3): 190-4, 1989.
5. Smalley RV, Andersen JW, Hawkins MJ, et al.: Interferon alfa combined with cytotoxic chemotherapy for patients with non-Hodgkin's lymphoma. N Engl J Med 327 (19): 1336-41, 1992.
6. Solal-Céligny P, Lepage E, Brousse N, et al.: Doxorubicin-containing regimen with or without interferon alfa-2b for advanced follicular lymphomas: final analysis of survival and toxicity in the Groupe d'Etude des Lymphomes Folliculaires 86 Trial. J Clin Oncol 16 (7): 2332-8, 1998.
7. Andersen JW, Smalley RV: Interferon alfa plus chemotherapy for non-Hodgkin's lymphoma: five-year follow-up. N Engl J Med 329 (24): 1821-2, 1993.
8. Hagenbeek A, Carde P, Meerwaldt JH, et al.: Maintenance of remission with human recombinant interferon alfa-2a in patients with stages III and IV low-grade malignant non-Hodgkin's lymphoma. European Organization for Research and Treatment of Cancer Lymphoma Cooperative Group. J Clin Oncol 16 (1): 41-7, 1998.
9. Aviles A, Duque G, Talavera A, et al.: Interferon alpha 2b as maintenance therapy in low grade malignant lymphoma improves duration of remission and survival. Leuk Lymphoma 20 (5-6): 495-9, 1996.
10. Arranz R, García-Alfonso P, Sobrino P, et al.: Role of interferon alfa-2b in the induction and maintenance treatment of low-grade non-Hodgkin's lymphoma: results from a prospective, multicenter trial with double randomization. J Clin Oncol 16 (4): 1538-46, 1998.
11. Fisher RI, Dana BW, LeBlanc M, et al.: Interferon alpha consolidation after intensive chemotherapy does not prolong the progression-free survival of patients with low-grade non-Hodgkin's lymphoma: results of the Southwest Oncology Group randomized phase III study 8809. J Clin Oncol 18 (10): 2010-6, 2000.
12. Cole BF, Solal-Céligny P, Gelber RD, et al.: Quality-of-life-adjusted survival analysis of interferon alfa-2b treatment for advanced follicular lymphoma: an aid to clinical decision making. J Clin Oncol 16 (7): 2339-44, 1998.
13. Ozer H, Wiernik PH, Giles F, et al.: Recombinant interferon-alpha therapy in patients with follicular lymphoma. Cancer 82 (10): 1821-30, 1998.
14. Allen IE, Ross SD, Borden SP, et al.: Meta-analysis to assess the efficacy of interferon-alpha in patients with follicular non-Hodgkin's lymphoma. J Immunother 24 (1): 58-65, 2001 Jan-Feb.
15. Cheson BD: The curious case of the baffling biological. J Clin Oncol 18 (10): 2007-9, 2000.
16. Rohatiner AZ, Gregory WM, Peterson B, et al.: Meta-analysis to evaluate the role of interferon in follicular lymphoma. J Clin Oncol 23 (10): 2215-23, 2005.
17. Eek R, Falkson G: The low-grade lymphoproliferative disorders. Oncology 54 (6): 441-58, 1997 Nov-Dec.
18. Ardeshna KM, Smith P, Norton A, et al.: Long-term effect of a watch and wait policy versus immediate systemic treatment for asymptomatic advanced-stage non-Hodgkin lymphoma: a randomised controlled trial. Lancet 362 (9383): 516-22, 2003.
19. Portlock CS, Rosenberg SA: No initial therapy for stage III and IV non-Hodgkin's lymphomas of favorable histologic types. Ann Intern Med 90(1): 10-13, 1979.
20. Brice P, Bastion Y, Lepage E, et al.: Comparison in low-tumor-burden follicular lymphomas between an initial no-treatment policy, prednimustine, or interferon alfa: a randomized study from the Groupe d'Etude des Lymphomes Folliculaires. Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol 15 (3): 1110-7, 1997.
21. Young RC, Longo DL, Glatstein E, et al.: The treatment of indolent lymphomas: watchful waiting v aggressive combined modality treatment. Semin Hematol 25 (2 Suppl 2): 11-6, 1988.
22. Ghielmini M, Schmitz SF, Cogliatti SB, et al.: Prolonged treatment with rituximab in patients with follicular lymphoma significantly increases event-free survival and response duration compared with the standard weekly x 4 schedule. Blood 103 (12): 4416-23, 2004.
23. Witzig TE, Vukov AM, Habermann TM, et al.: Rituximab therapy for patients with newly diagnosed, advanced-stage, follicular grade I non-Hodgkin's lymphoma: a phase II trial in the North Central Cancer Treatment Group. J Clin Oncol 23 (6): 1103-8, 2005.
24. Hainsworth JD, Litchy S, Shaffer DW, et al.: Maximizing therapeutic benefit of rituximab: maintenance therapy versus re-treatment at progression in patients with indolent non-Hodgkin's lymphoma--a randomized phase II trial of the Minnie Pearl Cancer Research Network. J Clin Oncol 23 (6): 1088-95, 2005.
25. Williams ME: ECOG 4402: randomized phase III-trial comparing two different rituximab dosing regimens for patients with low tumor burden indolent non-Hodgkin's lymphoma. Curr Hematol Rep 3 (6): 395-6, 2004.
26. Buske C, Hiddemann W: Rituximab maintenance therapy in indolent NHL: a clinical review. Leuk Res 30 (Suppl 1): S11-5, 2006.
27. Robinson KS, Williams ME, van der Jagt RH, et al.: Phase II multicenter study of bendamustine plus rituximab in patients with relapsed indolent B-cell and mantle cell non-Hodgkin's lymphoma. J Clin Oncol 26 (27): 4473-9, 2008.
28. Czuczman MS, Koryzna A, Mohr A, et al.: Rituximab in combination with fludarabine chemotherapy in low-grade or follicular lymphoma. J Clin Oncol 23 (4): 694-704, 2005.
29. Marcus R, Imrie K, Belch A, et al.: CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood 105 (4): 1417-23, 2005.
30. Marcus R, Imrie K, Solal-Celigny P, et al.: Phase III study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma. J Clin Oncol 26 (28): 4579-86, 2008.
31. Czuczman MS, Weaver R, Alkuzweny B, et al.: Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin's lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up. J Clin Oncol 22 (23): 4711-6, 2004.
32. Hainsworth JD, Litchy S, Morrissey LH, et al.: Rituximab plus short-duration chemotherapy as first-line treatment for follicular non-Hodgkin's lymphoma: a phase II trial of the Minnie Pearl Cancer Research Network. J Clin Oncol 23 (7): 1500-6, 2005.
33. Hiddemann W, Kneba M, Dreyling M, et al.: Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 106 (12): 3725-32, 2005.
34. Zinzani PL, Pulsoni A, Perrotti A, et al.: Fludarabine plus mitoxantrone with and without rituximab versus CHOP with and without rituximab as front-line treatment for patients with follicular lymphoma. J Clin Oncol 22 (13): 2654-61, 2004.
35. Forstpointner R, Dreyling M, Repp R, et al.: The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 104 (10): 3064-71, 2004.
36. Herold M, Haas A, Srock S, et al.: Rituximab added to first-line mitoxantrone, chlorambucil, and prednisolone chemotherapy followed by interferon maintenance prolongs survival in patients with advanced follicular lymphoma: an East German Study Group Hematology and Oncology Study. J Clin Oncol 25 (15): 1986-92, 2007.
37. Salles GA, Mounier N, de Guibert S, et al.: Rituximab combined with chemotherapy and interferon in follicular lymphoma patients: final analysis of the GELA-GOELAMS FL2000 study with a 5-year follow-up. [Abstract] Blood 110 (11): A-792, 2007.
38. Schulz H, Bohlius J, Skoetz N, et al.: Combined immunochemotherapy with rituximab improves overall survival in patients with follicular and mantle cell lymphoma: updated meta-analysis results. [Abstract] Blood 108 (11): A-2760, 2006.
39. Dupuis J, Berriolo-Riedinger A, Julian A, et al.: Impact of [(18)F]fluorodeoxyglucose positron emission tomography response evaluation in patients with high-tumor burden follicular lymphoma treated with immunochemotherapy: a prospective study from the Groupe d'Etudes des Lymphomes de l'Adulte and GOELAMS. J Clin Oncol 30 (35): 4317-22, 2012.
40. Trotman J, Fournier M, Lamy T, et al.: Positron emission tomography-computed tomography (PET-CT) after induction therapy is highly predictive of patient outcome in follicular lymphoma: analysis of PET-CT in a subset of PRIMA trial participants. J Clin Oncol 29 (23): 3194-200, 2011.
41. Whelan JS, Davis CL, Rule S, et al.: Fludarabine phosphate for the treatment of low grade lymphoid malignancy. Br J Cancer 64 (1): 120-3, 1991.
42. Solal-Céligny P, Brice P, Brousse N, et al.: Phase II trial of fludarabine monophosphate as first-line treatment in patients with advanced follicular lymphoma: a multicenter study by the Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol 14 (2): 514-9, 1996.
43. Saven A, Emanuele S, Kosty M, et al.: 2-Chlorodeoxyadenosine activity in patients with untreated, indolent non-Hodgkin's lymphoma. Blood 86 (5): 1710-6, 1995.
44. Fridrik MA, Jäger G, Kienzer HR, et al.: Efficacy and toxicity of 2-Chlorodeoxyadenosine (Cladribine)--2 h infusion for 5 days--as first-line treatment for advanced low grade non-Hodgkin's lymphoma. Eur J Cancer 34 (10): 1560-4, 1998.
45. Peterson BA, Petroni GR, Frizzera G, et al.: Prolonged single-agent versus combination chemotherapy in indolent follicular lymphomas: a study of the cancer and leukemia group B. J Clin Oncol 21 (1): 5-15, 2003.
46. Hoppe RT, Kushlan P, Kaplan HS, et al.: The treatment of advanced stage favorable histology non-Hodgkin's lymphoma: a preliminary report of a randomized trial comparing single agent chemotherapy, combination chemotherapy, and whole body irradiation. Blood 58 (3): 592-8, 1981.
47. Hochster H, Weller E, Gascoyne RD, et al.: Maintenance rituximab after cyclophosphamide, vincristine, and prednisone prolongs progression-free survival in advanced indolent lymphoma: results of the randomized phase III ECOG1496 Study. J Clin Oncol 27 (10): 1607-14, 2009.
48. Anderson T, DeVita VT Jr, Simon RM, et al.: Malignant lymphoma. II Prognostic factors and response to treatment of 473 patients at the National Cancer Institute. Cancer 50 (12): 2708-21, 1982.
49. Longo DL, Young RC, Hubbard SM, et al.: Prolonged initial remission in patients with nodular mixed lymphoma. Ann Intern Med 100 (5): 651-6, 1984.
50. Dana BW, Dahlberg S, Nathwani BN, et al.: Long-term follow-up of patients with low-grade malignant lymphomas treated with doxorubicin-based chemotherapy or chemoimmunotherapy. J Clin Oncol 11 (4): 644-51, 1993.
51. Tsimberidou AM, McLaughlin P, Younes A, et al.: Fludarabine, mitoxantrone, dexamethasone (FND) compared with an alternating triple therapy (ATT) regimen in patients with stage IV indolent lymphoma. Blood 100 (13): 4351-7, 2002.
52. Velasquez WS, Lew D, Grogan TM, et al.: Combination of fludarabine and mitoxantrone in untreated stages III and IV low-grade lymphoma: S9501. J Clin Oncol 21 (10): 1996-2003, 2003.
53. Kaminski MS, Tuck M, Estes J, et al.: 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 352 (5): 441-9, 2005.
54. Press OW, Unger JM, Braziel RM, et al.: Phase II trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated follicular non-Hodgkin's lymphoma: five-year follow-up of Southwest Oncology Group Protocol S9911. J Clin Oncol 24 (25): 4143-9, 2006.
55. Scholz CW, Pinto A, Linkesch W, et al.: (90)Yttrium-ibritumomab-tiuxetan as first-line treatment for follicular lymphoma: 30 months of follow-up data from an international multicenter phase II clinical trial. J Clin Oncol 31 (3): 308-13, 2013.
56. Press OW, Unger JM, Rimsza LM, et al.: Phase III randomized intergroup trial of CHOP plus rituximab compared with CHOP chemotherapy plus (131)iodine-tositumomab for previously untreated follicular non-Hodgkin lymphoma: SWOG S0016. J Clin Oncol 31 (3): 314-20, 2013.
57. Salles G, Seymour JF, Offner F, et al.: Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet 377 (9759): 42-51, 2011.
58. Witzig TE: Moving radioimmunotherapy forward for follicular lymphoma. J Clin Oncol 31 (3): 294-6, 2013.
59. van Oers MH, Tönnissen E, Van Glabbeke M, et al.: BCL-2/IgH polymerase chain reaction status at the end of induction treatment is not predictive for progression-free survival in relapsed/resistant follicular lymphoma: results of a prospective randomized EORTC 20981 phase III intergroup study. J Clin Oncol 28 (13): 2246-52, 2010.
60. Vidal L, Gafter-Gvili A, Salles G, et al.: Rituximab maintenance for the treatment of patients with follicular lymphoma: an updated systematic review and meta-analysis of randomized trials. J Natl Cancer Inst 103 (23): 1799-806, 2011.
61. Friedberg JW: Rituximab maintenance in follicular lymphoma: PRIMA. Lancet 377 (9759): 4-6, 2011.
62. van Besien K, Sobocinski KA, Rowlings PA, et al.: Allogeneic bone marrow transplantation for low-grade lymphoma. Blood 92 (5): 1832-6, 1998.
63. van Besien K, Loberiza FR Jr, Bajorunaite R, et al.: Comparison of autologous and allogeneic hematopoietic stem cell transplantation for follicular lymphoma. Blood 102 (10): 3521-9, 2003.
64. Deconinck E, Foussard C, Milpied N, et al.: High-dose therapy followed by autologous purged stem-cell transplantation and doxorubicin-based chemotherapy in patients with advanced follicular lymphoma: a randomized multicenter study by GOELAMS. Blood 105 (10): 3817-23, 2005.
65. Sebban C, Mounier N, Brousse N, et al.: Standard chemotherapy with interferon compared with CHOP followed by high-dose therapy with autologous stem cell transplantation in untreated patients with advanced follicular lymphoma: the GELF-94 randomized study from the Groupe d'Etude des Lymphomes de l'Adulte (GELA). Blood 108 (8): 2540-4, 2006.
66. Lenz G, Dreyling M, Schiegnitz E, et al.: Myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission prolongs progression-free survival in follicular lymphoma: results of a prospective, randomized trial of the German Low-Grade Lymphoma Study Group. Blood 104 (9): 2667-74, 2004.
67. Rohatiner AZ, Nadler L, Davies AJ, et al.: Myeloablative therapy with autologous bone marrow transplantation for follicular lymphoma at the time of second or subsequent remission: long-term follow-up. J Clin Oncol 25 (18): 2554-9, 2007.
68. Gopal AK, Rajendran JG, Gooley TA, et al.: High-dose [131I]tositumomab (anti-CD20) radioimmunotherapy and autologous hematopoietic stem-cell transplantation for adults > or = 60 years old with relapsed or refractory B-cell lymphoma. J Clin Oncol 25 (11): 1396-402, 2007.
69. Gyan E, Foussard C, Bertrand P, et al.: High-dose therapy followed by autologous purged stem cell transplantation and doxorubicin-based chemotherapy in patients with advanced follicular lymphoma: a randomized multicenter study by the GOELAMS with final results after a median follow-up of 9 years. Blood 113 (5): 995-1001, 2009.
70. Al Khabori M, de Almeida JR, Guyatt GH, et al.: Autologous stem cell transplantation in follicular lymphoma: a systematic review and meta-analysis. J Natl Cancer Inst 104 (1): 18-28, 2012.
71. Schaaf M, Reiser M, Borchmann P, et al.: High-dose therapy with autologous stem cell transplantation versus chemotherapy or immuno-chemotherapy for follicular lymphoma in adults. Cochrane Database Syst Rev 1: CD007678, 2012.
72. Bendandi M, Gocke CD, Kobrin CB, et al.: Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat Med 5 (10): 1171-7, 1999.
73. Neelapu SS, Gause BL, Nikcevich DA, et al.: Phase III randomized trial of patient-specific vaccination for previously untreated patients with follicular lymphoma in first complete remission: protocol summary and interim report. Clin Lymphoma 6 (1): 61-4, 2005.
74. Inogès S, Rodrìguez-Calvillo M, Zabalegui N, et al.: Clinical benefit associated with idiotypic vaccination in patients with follicular lymphoma. J Natl Cancer Inst 98 (18): 1292-301, 2006.
75. Ha CS, Kong JS, Tucker SL, et al.: Central lymphatic irradiation for stage I-III follicular lymphoma: report from a single-institutional prospective study. Int J Radiat Oncol Biol Phys 57 (2): 316-20, 2003.
76. Czuczman MS, Fayad L, Delwail V, et al.: Ofatumumab monotherapy in rituximab-refractory follicular lymphoma: results from a multicenter study. Blood 119 (16): 3698-704, 2012.
77. Chan EK, Fung S, Gospodarowicz M, et al.: Palliation by low-dose local radiation therapy for indolent non-Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 81 (5): e781-6, 2011.
78. Rossier C, Schick U, Miralbell R, et al.: Low-dose radiotherapy in indolent lymphoma. Int J Radiat Oncol Biol Phys 81 (3): e1-6, 2011.

Treatment for Indolent, Recurrent Adult NHL

In general, treatment with standard agents rarely produces a cure in patients whose disease has relapsed. Sustained remissions after relapse can often be obtained in patients with indolent lymphomas, but relapse will usually ensue. Favorable survival after relapse has been associated with an age younger than 60 years, complete remission rather than partial remission, and duration of response longer than 1 year. Even the most favorable subset, however, has a tenfold greater mortality compared with age-adjusted U.S. population rates.[1] Patients who experience a relapse with indolent lymphoma can often have their disease controlled with single agent or combination chemotherapy, rituximab (an anti-CD20 monoclonal antibody), lenalidomide, radiolabeled anti-CD20 monoclonal antibodies, or palliative radiation therapy.[2,3] Long-term freedom from second relapse, however, is uncommon and multiple relapses will usually occur. Patients with indolent lymphoma may experience a relapse with a more aggressive histology. If the clinical pattern of relapse suggests that the disease is behaving in a more aggressive manner, a biopsy should be performed. Documentation of conversion to a more aggressive histology requires an appropriate change to therapy applicable to that histologic type.[4] Rapid growth or discordant growth between various disease sites may indicate a histologic conversion.

In a retrospective review of 325 patients between 1972 and 1999, the risk of histologic transformation was 30% by 10 years from diagnosis.[5] In this series, high risk factors for subsequent histologic transformation were advanced stage, high-risk Follicular Lymphoma International Prognostic Index, and expectant management. The median survival after transformation was 1 to 2 years, with 25% of patients alive at 5 years and with approximately 10% to 20% of patients alive 10 years after re-treatment.[6]

(Refer to the Treatment for Aggressive, Recurrent Adult NHL section of this summary for descriptions of the regimens used to treat histologic conversions.) The durability of the second remission may be short, and clinical trials should be considered.

Standard Treatment Options for Indolent, Recurrent Adult NHL

Standard treatment options for indolent, recurrent adult NHL include the following:

1.Chemotherapy (single agent or combination).
2.Rituximab.
3.Lenalidomide.
4.Radiolabeled anti-CD20 monoclonal antibodies.
5.Palliative radiation therapy.

Chemotherapy (single agent or combination)

Significant activity for fludarabine and 2-chlorodeoxyadenosine has been demonstrated in relapsed low-grade lymphomas, both as single agents and in combination with other drugs.[7,8,9,10,11,12] Patients may respond to the original induction regimen again, especially if the duration of remission exceeds one year. For relapsing patients, rituximab alone or in combination with agents not previously used may induce remissions.

Rituximab

Rituximab results in a 40% to 50% response rate in patients who relapse with indolent B-cell lymphomas.[13,14,15,16] Rituximab can also be combined with combination chemotherapy.[17]

Evidence (rituximab):

  • In three randomized, prospective studies involving previously treated patients with relapsed indolent lymphoma, patients were randomly assigned to rituximab maintenance after re-treatment with combination chemotherapy (with or without rituximab during induction) or rituximab alone; all trials showed prolongation of response duration,[18,19,20] and one trial demonstrated improvement in median progression-free survival (PFS) (3.7 years vs. 1.3 years, P < .001) and overall survival (OS) (74% vs. 64%, P = .07) at 5 years with a median follow-up of 39 months favoring maintenance rituximab.[19]

Lenalidomide

Responses of 20% to 30% have been reported for lenalidomide, especially for follicular lymphoma and small lymphocytic lymphoma.[21][Level of evidence: 3iiiDiv]

Radiolabeled anti-CD20 monoclonal antibodies

Durable responses to radiolabeled monoclonal antibodies, such as yttrium-90 ibritumomab (commercially available) and iodine-131 tositumomab, have also been reported before and after cytotoxic chemotherapy.[22,23,24,25,26,27][Level of evidence: 1iiDiii]

Palliative radiation therapy

Palliation may be achieved with very low-dose (4 Gy) involved-field radiation therapy for patients with indolent and aggressive relapsed disease.[28]

Treatment Options Under Clinical Evaluation for Indolent, Recurrent Adult NHL

Treatment options under clinical evaluation include the following:

  • Stem cell transplant. In many institutions, autologous or allogeneic stem cell transplantations are being used for patients whose disease has relapsed. Such an approach is still under evaluation but should be considered in the context of a clinical trial.[29,30,31,32,33]

Evidence (stem cell transplant):

  • The German Low-Grade Lymphoma Study Group treated 307 patients with follicular lymphoma with two cycles of CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone)-like induction chemotherapy and then randomly assigned them to autologous stem cell transplantation versus interferon maintenance.[34] With a median follow-up of 4.2 years, the 5-year PFS was 65% for transplantation versus 33% for interferon (P < .001), but with no difference in OS.[34][Level of evidence: 1iiDiii]

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with indolent, recurrent adult non-Hodgkin lymphoma. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References:

1. Weisdorf DJ, Andersen JW, Glick JH, et al.: Survival after relapse of low-grade non-Hodgkin's lymphoma: implications for marrow transplantation. J Clin Oncol 10 (6): 942-7, 1992.
2. Peterson BA: Current treatment of follicular low-grade lymphomas. Semin Oncol 26 (5 Suppl 14): 2-11, 1999.
3. Haas RL, Poortmans P, de Jong D, et al.: High response rates and lasting remissions after low-dose involved field radiotherapy in indolent lymphomas. J Clin Oncol 21 (13): 2474-80, 2003.
4. Tsimberidou AM, O'Brien S, Khouri I, et al.: Clinical outcomes and prognostic factors in patients with Richter's syndrome treated with chemotherapy or chemoimmunotherapy with or without stem-cell transplantation. J Clin Oncol 24 (15): 2343-51, 2006.
5. Montoto S, Davies AJ, Matthews J, et al.: Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J Clin Oncol 25 (17): 2426-33, 2007.
6. Yuen AR, Kamel OW, Halpern J, et al.: Long-term survival after histologic transformation of low-grade follicular lymphoma. J Clin Oncol 13 (7): 1726-33, 1995.
7. Hochster HS, Kim KM, Green MD, et al.: Activity of fludarabine in previously treated non-Hodgkin's low-grade lymphoma: results of an Eastern Cooperative Oncology Group study. J Clin Oncol 10 (1): 28-32, 1992.
8. Kay AC, Saven A, Carrera CJ, et al.: 2-Chlorodeoxyadenosine treatment of low-grade lymphomas. J Clin Oncol 10 (3): 371-7, 1992.
9. Redman JR, Cabanillas F, Velasquez WS, et al.: Phase II trial of fludarabine phosphate in lymphoma: an effective new agent in low-grade lymphoma. J Clin Oncol 10 (5): 790-4, 1992.
10. Tsimberidou AM, McLaughlin P, Younes A, et al.: Fludarabine, mitoxantrone, dexamethasone (FND) compared with an alternating triple therapy (ATT) regimen in patients with stage IV indolent lymphoma. Blood 100 (13): 4351-7, 2002.
11. Tulpule A, Schiller G, Harvey-Buchanan LA, et al.: Cladribine in the treatment of advanced relapsed or refractory low and intermediate grade non-Hodgkin's lymphoma. Cancer 83 (11): 2370-6, 1998.
12. Klasa RJ, Meyer RM, Shustik C, et al.: Randomized phase III study of fludarabine phosphate versus cyclophosphamide, vincristine, and prednisone in patients with recurrent low-grade non-Hodgkin's lymphoma previously treated with an alkylating agent or alkylator-containing regimen. J Clin Oncol 20 (24): 4649-54, 2002.
13. Davis TA, White CA, Grillo-López AJ, et al.: Single-agent monoclonal antibody efficacy in bulky non-Hodgkin's lymphoma: results of a phase II trial of rituximab. J Clin Oncol 17 (6): 1851-7, 1999.
14. Piro LD, White CA, Grillo-López AJ, et al.: Extended Rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin's lymphoma. Ann Oncol 10 (6): 655-61, 1999.
15. Davis TA, Grillo-López AJ, White CA, et al.: Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin's lymphoma: safety and efficacy of re-treatment. J Clin Oncol 18 (17): 3135-43, 2000.
16. Hainsworth JD, Litchy S, Shaffer DW, et al.: Maximizing therapeutic benefit of rituximab: maintenance therapy versus re-treatment at progression in patients with indolent non-Hodgkin's lymphoma--a randomized phase II trial of the Minnie Pearl Cancer Research Network. J Clin Oncol 23 (6): 1088-95, 2005.
17. Forstpointner R, Dreyling M, Repp R, et al.: The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 104 (10): 3064-71, 2004.
18. van Oers MH, Van Glabbeke M, Giurgea L, et al.: Rituximab maintenance treatment of relapsed/resistant follicular non-Hodgkin's lymphoma: long-term outcome of the EORTC 20981 phase III randomized intergroup study. J Clin Oncol 28 (17): 2853-8, 2010.
19. van Oers MH, Klasa R, Marcus RE, et al.: Rituximab maintenance improves clinical outcome of relapsed/resistant follicular non-Hodgkin lymphoma in patients both with and without rituximab during induction: results of a prospective randomized phase 3 intergroup trial. Blood 108 (10): 3295-301, 2006.
20. Martinelli G, Schmitz SF, Utiger U, et al.: Long-term follow-up of patients with follicular lymphoma receiving single-agent rituximab at two different schedules in trial SAKK 35/98. J Clin Oncol 28 (29): 4480-4, 2010.
21. Witzig TE, Wiernik PH, Moore T, et al.: Lenalidomide oral monotherapy produces durable responses in relapsed or refractory indolent non-Hodgkin's Lymphoma. J Clin Oncol 27 (32): 5404-9, 2009.
22. Witzig TE, Gordon LI, Cabanillas F, et al.: Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J Clin Oncol 20 (10): 2453-63, 2002.
23. Witzig TE, Flinn IW, Gordon LI, et al.: Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin's lymphoma. J Clin Oncol 20 (15): 3262-9, 2002.
24. Ansell SM, Ristow KM, Habermann TM, et al.: Subsequent chemotherapy regimens are well tolerated after radioimmunotherapy with yttrium-90 ibritumomab tiuxetan for non-Hodgkin's lymphoma. J Clin Oncol 20 (18): 3885-90, 2002.
25. Davies AJ, Rohatiner AZ, Howell S, et al.: Tositumomab and iodine I 131 tositumomab for recurrent indolent and transformed B-cell non-Hodgkin's lymphoma. J Clin Oncol 22 (8): 1469-79, 2004.
26. Fisher RI, Kaminski MS, Wahl RL, et al.: Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin's lymphomas. J Clin Oncol 23 (30): 7565-73, 2005.
27. Leahy MF, Seymour JF, Hicks RJ, et al.: Multicenter phase II clinical study of iodine-131-rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin's lymphoma. J Clin Oncol 24 (27): 4418-25, 2006.
28. Haas RL, Poortmans P, de Jong D, et al.: Effective palliation by low dose local radiotherapy for recurrent and/or chemotherapy refractory non-follicular lymphoma patients. Eur J Cancer 41 (12): 1724-30, 2005.
29. Freedman A, Friedberg JW, Gribben J: High-dose therapy for follicular lymphoma. Oncology (Huntingt) 14 (3): 321-6, 329; discussion 330-2, 338, 2000.
30. Brice P, Simon D, Bouabdallah R, et al.: High-dose therapy with autologous stem-cell transplantation (ASCT) after first progression prolonged survival of follicular lymphoma patients included in the prospective GELF 86 protocol. Ann Oncol 11 (12): 1585-90, 2000.
31. Khouri IF, McLaughlin P, Saliba RM, et al.: Eight-year experience with allogeneic stem cell transplantation for relapsed follicular lymphoma after nonmyeloablative conditioning with fludarabine, cyclophosphamide, and rituximab. Blood 111 (12): 5530-6, 2008.
32. Sebban C, Brice P, Delarue R, et al.: Impact of rituximab and/or high-dose therapy with autotransplant at time of relapse in patients with follicular lymphoma: a GELA study. J Clin Oncol 26 (21): 3614-20, 2008.
33. Thomson KJ, Morris EC, Milligan D, et al.: T-cell-depleted reduced-intensity transplantation followed by donor leukocyte infusions to promote graft-versus-lymphoma activity results in excellent long-term survival in patients with multiply relapsed follicular lymphoma. J Clin Oncol 28 (23): 3695-700, 2010.
34. Lenz G, Dreyling M, Schiegnitz E, et al.: Myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission prolongs progression-free survival in follicular lymphoma: results of a prospective, randomized trial of the German Low-Grade Lymphoma Study Group. Blood 104 (9): 2667-74, 2004.

Treatment for Aggressive, Stage I and Contiguous Stage II Adult NHL

Patients with stage I or contiguous stage II diffuse large B-cell lymphoma are candidates for combination chemotherapy with or without involved-field radiation therapy (IF-XRT).

The following drug combinations are referred to in this section:

  • R-CHOP: rituximab, an anti-CD20 monoclonal antibody, + cyclophosphamide + doxorubicin + vincristine + prednisone.

Standard Treatment Options for Aggressive, Stage I and Contiguous Stage II Adult NHL

Standard treatment options for aggressive, stage I and contiguous stage II adult NHL include the following:

1.R-CHOP with or without IF-XRT.

R-CHOP with or without IF-XRT

Four prospective randomized trials have evaluated the comparison of CHOP or more intensive CHOP-based chemotherapy alone versus combined–modality therapy with CHOP and IF-XRT.[1,2,3,4,5]

Evidence (CHOP vs. CHOP with IF-XRT):

1. In a randomized trial with 7 years' median follow-up, 576 patients older than 60 years with early-stage disease received four cycles of CHOP with or without IF-XRT; there was no difference in 5-year event-free survival (EFS) (61% vs. 64%, P = .5) or overall survival (OS) (72% vs. 68%, P = .6).[1][Level of evidence: 1iiA]
2.A randomized trial of 401 patients comparing eight cycles of CHOP to three cycles of CHOP with IF-XRT was initially reported as having an OS advantage for the combined–modality arm at 5 years,[2] but a re-evaluation for OS at 9 years showed no difference in either arm of the study.[3][Level of evidence: 1iiA]
3.A randomized study (EST-1484) of 210 patients who attained a radiologic complete remission after eight cycles of CHOP compared IF-XRT with no further therapy; there was no difference in OS at 10 years (68% vs. 65%, P = .24).[4][Level of evidence: 1iiA]
4.A randomized trial of 631 patients younger than 60 years compared more intensive CHOP-based chemotherapy versus three cycles of CHOP with IF-XRT; with 4 years' median follow-up, the intensive chemotherapy was superior in 5-year EFS (82% vs. 74%, P > .001) and 5-year OS (90% vs. 81%, P = .001).[5][Level of evidence: 1iiA]

The confirmation of efficacy for rituximab in advanced-stage disease as evidenced in SWOG-S0014 (NCT00005089), for example, has suggested the use of R-CHOP with or without radiation therapy but its use is only supported by retrospective comparisons.[6][Level of evidence: 3iiiDiii]

  • R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone); four to six cycles.
  • R-CHOP (three to six cycles) + IF-XRT.

Evidence (R-CHOP vs. CHOP):

  • A randomized study (DSHNHL-1999-1A) of 1,222 patients older than 60 years compared R-CHOP given every 2 weeks for six or eight cycles with CHOP given every 2 weeks for six or eight cycles.[7] Although patients with early-stage disease were included in this trial, most patients had advanced-stage disease.
    • With a median follow-up of 72 months, the EFS favored R-CHOP given every 2 weeks for six or eight cycles (EFS at 6 y, 74% vs. 56%; P < .001).
    • The OS favored R-CHOP for only six cycles because of increased toxicity in the eight-cycle arm (OS at 6 y, 90% vs. 80%, P = .0004.[8][Level of evidence: 1iiA]
    • There has been no comparison to standard R-CHOP or CHOP given every 3 weeks. There are no comparative studies to establish an optimal number of chemotherapy cycles for patients with early-stage disease.

Treatment Options Under Clinical Evaluation for Aggressive, Stage I and Contiguous Stage II Adult NHL

Treatment options under clinical evaluation include the following:

  • R-ACVBP (rituximab, doxorubicin, cyclophosphamide, vindesine, bleomycin, prednisone).[5]

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with aggressive, stage I adult non-Hodgkin lymphoma and aggressive, contiguous stage II adult non-Hodgkin lymphoma. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References:

1. Bonnet C, Fillet G, Mounier N, et al.: CHOP alone compared with CHOP plus radiotherapy for localized aggressive lymphoma in elderly patients: a study by the Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol 25 (7): 787-92, 2007.
2. Miller TP, Dahlberg S, Cassady JR, et al.: Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade non-Hodgkin's lymphoma. N Engl J Med 339 (1): 21-6, 1998.
3. Miller TP, Leblanc M, Spier C, et al.: CHOP alone compared to CHOP plus radiotherapy for early stage aggressive non-Hodgkin's lymphomas: update of the Southwest Oncology Group (SWOG) randomized trial. [Abstract] Blood 98 (11): A-3024, 2001.
4. Horning SJ, Weller E, Kim K, et al.: Chemotherapy with or without radiotherapy in limited-stage diffuse aggressive non-Hodgkin's lymphoma: Eastern Cooperative Oncology Group study 1484. J Clin Oncol 22 (15): 3032-8, 2004.
5. Reyes F, Lepage E, Ganem G, et al.: ACVBP versus CHOP plus radiotherapy for localized aggressive lymphoma. N Engl J Med 352 (12): 1197-205, 2005.
6. Persky DO, Unger JM, Spier CM, et al.: Phase II study of rituximab plus three cycles of CHOP and involved-field radiotherapy for patients with limited-stage aggressive B-cell lymphoma: Southwest Oncology Group study 0014. J Clin Oncol 26 (14): 2258-63, 2008.
7. Pfreundschuh M, Schubert J, Ziepert M, et al.: Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol 9 (2): 105-16, 2008.
8. Pfreundschuh M, Kuhnt E, Trümper L, et al.: CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol 12 (11): 1013-22, 2011.

Treatment for Aggressive, Noncontiguous Stage II / III / IV Adult NHL

The treatment of choice for patients with advanced stages of aggressive non-Hodgkin lymphoma (NHL) is combination chemotherapy, either alone or supplemented by local-field radiation therapy.[1]

The following drug combinations are referred to in this section:

  • ACVBP: doxorubicin + cyclophosphamide + vindesine + bleomycin + prednisone.
  • CHOP: cyclophosphamide + doxorubicin + vincristine + prednisone.
  • CNOP: cyclophosphamide + mitoxantrone + vincristine + prednisone.
  • m-BACOD: methotrexate + bleomycin + doxorubicin + cyclophosphamide + vincristine + dexamethasone + leucovorin.
  • MACOP-B: methotrexate + doxorubicin + cyclophosphamide + vincristine + prednisone fixed dose + bleomycin + leucovorin.
  • ProMACE CytaBOM: prednisone + doxorubicin + cyclophosphamide + etoposide + cytarabine + bleomycin + vincristine + methotrexate + leucovorin.
  • R-CHOP: rituximab, an anti-CD20 monoclonal antibody, + cyclophosphamide + doxorubicin + vincristine + prednisone.

Standard Treatment Options for Aggressive, Noncontiguous Stage II/III/IV Adult NHL

Standard treatment options for Aggressive, Noncontiguous Stage II/III/IV Adult NHL include the following:

1.R-CHOP.
2.Other combination chemotherapy.

R-CHOP

The following studies established R-CHOP as the standard regimen for newly diagnosed patients with DLBCL.[2]

Evidence (R-CHOP):

1.R-CHOP showed improvement in event-free survival (EFS) and overall survival (OS) compared with CHOP alone in 399 advanced-stage patients with DLBCL older than 60 years (EFS, 57% vs. 38%; P = .002, and OS, 70% vs. 57%; P = .007 at 2 years).[3][Level of evidence: 1iiA] At 10-years' median follow-up, the OS of patients who received R-CHOP compared with patients who received CHOP was 44% versus 28%, P < .0001.[4]
2.Similarly, for 326 evaluable patients younger than 61 years, R-CHOP showed improvement in EFS and OS compared with CHOP alone (EFS, 79% vs. 59%, P = .001, and OS, 93% vs. 84%, P = .001 at 3 years).[5][Level of evidence: 1iiA]
3.A randomized study (DSHNHL-1999-1A) of 1,222 patients older than 60 years compared R-CHOP given every 2 weeks for six or eight cycles to CHOP given every 2 weeks for six or eight cycles.[6] With a median follow-up of 72 months, the EFS favored R-CHOP given every 2 weeks for six or eight cycles (EFS at 6 years, 74% vs. 56%; P < .0001). The OS favored R-CHOP for only six cycles because of increased toxicity in the eight-cycle arm (OS at 6 years, 90% vs. 80%; P = .0004).[6][Level of evidence: 1iiA] There was no comparison to standard R-CHOP or CHOP given every 3 weeks.

Evidence (CHOP with or without other therapies):

1.A trial of 380 patients younger than 60 years with DLBCL and an age-adjusted International Prognostic Index (IPI) rating of 1 randomized treatment to ACVBP + rituximab (R-ACVBP) + consolidation with methotrexate, ifosfamide, etoposide, and cytarabine versus CHOP + rituximab.[7] With a median follow-up of 44 months, 3-year OS favored R-ACVBP (92% vs. 84%; hazard ratio, 0.44; 95% confidence interval (CI), 0.28–0.81, P = .007).[7][Level of evidence: 1iiA] The significantly worse toxicities with R-ACVBP, the narrow target population (<60 y with either elevated lactate dehydrogenase (LDH) or stage III/IV disease, but not both), and the lack of a confirmatory trial may inhibit adoption of R-ACVBP as a new standard of care.
2.Two prospective randomized trials that compared CHOP with CNOP for patients aged 60 years and older with diffuse large cell lymphoma showed a significant advantage for CHOP in terms of disease-free survival (DFS) and OS.[8]; [9][Level of evidence: 1iiA]
3.Two other randomized trials of patients aged 70 years and older confirm the superiority of CHOP over other less toxic regimens in progression-free survival and OS.[8]; [9][Level of evidence: 1iiA]
4.Although infusion regimens have been proposed, a randomized trial of infusional CHOP versus standard CHOP therapy showed no improvement in relapse-free survival or OS.[10][Level of evidence: 1iiA]
5.A preliminary study using CHOP with or without etoposide for patients older than 60 years suggested improvement in EFS and OS for treatment delivered every 2 weeks versus the standard 3-week regimen.[11].

As SWOG-9349 did, clinical trials continue to explore modifications of CHOP and rituximab with CHOP by increasing doses, reducing intervals between cycles, and combining new drugs with new mechanisms of action.[12,13,14,15]

Other combination chemotherapy

Doxorubicin-based combination chemotherapy produces long-term DFS in 35% to 45% of patients.[2,3,4] Higher cure rates have been reported in single-institution studies than in cooperative group trials.

Evidence (other combination chemotherapy):

1.A prospective, randomized trial of four regimens (CHOP, ProMACE CytaBOM, m-BACOD, and MACOP-B) for patients with DLBCL showed no difference in OS or time-to-treatment failure at 3 years.[16][Level of evidence: 1iiA]
2.Other randomized trials have confirmed no advantage among the standard doxorubicin-based combinations versus CHOP.[17]; [18]Level of evidence: 1iiA]

A randomized clinical trial failed to demonstrate a beneficial effect of adjuvant radiation therapy in advanced-stage aggressive NHL.[19]

Stage IE or IIE gastric DLBCL

Four case series involving more than 100 patients with stage IE or IIE disease (with or without associated mucosa-associated lymphatic tissue) and with positive Helicobacter pylori infection reported that more than 50% of patients attained a durable complete remission after appropriate antibiotic therapy to eradicate H. pylori.[20,21,22,23][Level of evidence: 3iiiDiv]

Prognostic factors

An IPI for aggressive NHL (diffuse large cell lymphoma) identifies five significant risk factors prognostic of OS:[24]

1.Age (≤60 years vs. >60 years).
2.Serum LDH (normal vs. elevated).
3.Performance status (0 or 1 vs. 2–4).
4.Stage (stage I or stage II vs. stage III or stage IV).
5.Extranodal site involvement (0 or 1 vs. 2–4).

Patients with two or more risk factors have a less than 50% chance of relapse-free survival and OS at 5 years. This study also identifies patients at high risk of relapse based on specific sites of involvement, including bone marrow, central nervous system (CNS), liver, lung, and spleen. The bcl-2 gene and rearrangement of the myc gene or dual overexpression of the myc gene, or both, confer a particularly poor prognosis.[25,26,27,28] Patients at high risk of relapse may be considered for clinical trials.[29] Molecular profiles of gene expression using DNA microarrays may help to stratify patients in the future for therapies directed at specific targets and to better predict survival after standard chemotherapy.[30,31]

Treatment of tumor lysis syndrome

Patients with bulky and extensive lymphadenopathy and elevations of serum uric acid and LDH are at increased risk of tumor lysis syndrome resulting in metabolic derangements such as hyperuricemia, hyperkalemia, hyperphosphatemia, hypocalcemia, and subsequent acute renal failure.[32] Treatment options include: alkaline hydration, allopurinol, and rasburicase, a recombinant urate oxidase.[33]

CNS prophylaxis

CNS prophylaxis (usually with four to six injections of methotrexate intrathecally) is recommended for patients with paranasal sinus or testicular involvement. Some clinicians are employing high-dose intravenous methotrexate (usually four doses) as an alternative to intrathecal therapy because drug delivery is improved and patient morbidity is decreased.[34] CNS prophylaxis for bone marrow involvement is controversial; some investigators recommend it, and others do not.[16,35]

  • A retrospective analysis of 605 patients with diffuse large cell lymphoma who did not receive prophylactic intrathecal therapy identified an elevated serum LDH and more than one extranodal site as independent risk factors for CNS recurrence. Patients with both risk factors have a 17% probability of CNS recurrence at 1 year after diagnosis (95% CI, 7%–28%) versus 2.8% (95% CI, 2.7%–2.9%) for the remaining patients.[36][Level of evidence: 3iiiDiii]

Patients with diffuse, small, noncleaved-cell/Burkitt's lymphoma or lymphoblastic lymphoma have a 20% to 30% lifetime risk of CNS involvement. CNS prophylaxis is recommended for these histologies.

Treatment Options Under Clinical Evaluation for Aggressive, Noncontiguous Stage II/III/IV Adult NHL

Treatment options under clinical evaluation include the following:

  • Bone marrow transplant (BMT) or stem cell transplantation (SCT).

    Several randomized, prospective trials evaluated the role of autologous BMT or SCT consolidation versus chemotherapy alone in patients in first remission with diffuse large cell lymphoma.[37,38,39,40,41,42,43,44]; [45][Level of evidence: 1iiA] Although some of these trials demonstrated significant increases in EFS (by 10% to 20%) among patients who received high-dose therapy, significant differences in OS could not be demonstrated prospectively in any of the series.

    Retrospective analyses of high-intermediate (two risk factors) or high-risk (more than three risk factors) patients as defined by IPI suggest improved survival with BMT in two of the trials.[38,44] These studies do not establish that high-dose consolidation is of value to patients with aggressive lymphoma who are truly at high risk of relapse, and they also demonstrate that EFS may be a poor surrogate for OS for these patients.[46]

    Whether autologous BMT, or peripheral SCT, or allogeneic BMT have definitive roles in the treatment of high-risk patients in first remission awaits the results of ongoing randomized trials such as the SWOG-S0016 (NCT00006721) trial, for example, that employed R-CHOP or other rituximab-based chemotherapy regimens.

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with aggressive, noncontiguous stage II adult non-Hodgkin lymphoma, aggressive, stage III adult non-Hodgkin lymphoma and aggressive, stage IV adult non-Hodgkin lymphoma. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References:

1. Shankland KR, Armitage JO, Hancock BW: Non-Hodgkin lymphoma. Lancet 380 (9844): 848-57, 2012.
2. Coiffier B: State-of-the-art therapeutics: diffuse large B-cell lymphoma. J Clin Oncol 23 (26): 6387-93, 2005.
3. Coiffier B, Lepage E, Briere J, et al.: CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346 (4): 235-42, 2002.
4. Coiffier B, Thieblemont C, Van Den Neste E, et al.: Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d'Etudes des Lymphomes de l'Adulte. Blood 116 (12): 2040-5, 2010.
5. Pfreundschuh M, Trümper L, Osterborg A, et al.: CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol 7 (5): 379-91, 2006.
6. Pfreundschuh M, Kuhnt E, Trümper L, et al.: CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol 12 (11): 1013-22, 2011.
7. Récher C, Coiffier B, Haioun C, et al.: Intensified chemotherapy with ACVBP plus rituximab versus standard CHOP plus rituximab for the treatment of diffuse large B-cell lymphoma (LNH03-2B): an open-label randomised phase 3 trial. Lancet 378 (9806): 1858-67, 2011.
8. Bastion Y, Blay JY, Divine M, et al.: Elderly patients with aggressive non-Hodgkin's lymphoma: disease presentation, response to treatment, and survival--a Groupe d'Etude des Lymphomes de l'Adulte study on 453 patients older than 69 years. J Clin Oncol 15 (8): 2945-53, 1997.
9. Tirelli U, Errante D, Van Glabbeke M, et al.: CHOP is the standard regimen in patients > or = 70 years of age with intermediate-grade and high-grade non-Hodgkin's lymphoma: results of a randomized study of the European Organization for Research and Treatment of Cancer Lymphoma Cooperative Study Group. J Clin Oncol 16 (1): 27-34, 1998.
10. Gaynor ER, Unger JM, Miller TP, et al.: Infusional CHOP chemotherapy (CVAD) with or without chemosensitizers offers no advantage over standard CHOP therapy in the treatment of lymphoma: a Southwest Oncology Group Study. J Clin Oncol 19 (3): 750-5, 2001.
11. Pfreundschuh M, Trümper L, Kloess M, et al.: Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood 104 (3): 634-41, 2004.
12. Blayney DW, LeBlanc ML, Grogan T, et al.: Dose-intense chemotherapy every 2 weeks with dose-intense cyclophosphamide, doxorubicin, vincristine, and prednisone may improve survival in intermediate- and high-grade lymphoma: a phase II study of the Southwest Oncology Group (SWOG 9349). J Clin Oncol 21 (13): 2466-73, 2003.
13. Coiffier B: Increasing chemotherapy intensity in aggressive lymphomas: a renewal? J Clin Oncol 21 (13): 2457-9, 2003.
14. Tilly H, Lepage E, Coiffier B, et al.: Intensive conventional chemotherapy (ACVBP regimen) compared with standard CHOP for poor-prognosis aggressive non-Hodgkin lymphoma. Blood 102 (13): 4284-9, 2003.
15. Pfreundschuh M, Trümper L, Kloess M, et al.: Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of young patients with good-prognosis (normal LDH) aggressive lymphomas: results of the NHL-B1 trial of the DSHNHL. Blood 104 (3): 626-33, 2004.
16. Fisher RI, Gaynor ER, Dahlberg S, et al.: Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma. N Engl J Med 328 (14): 1002-6, 1993.
17. Gordon LI, Harrington D, Andersen J, et al.: Comparison of a second-generation combination chemotherapeutic regimen (m-BACOD) with a standard regimen (CHOP) for advanced diffuse non-Hodgkin's lymphoma. N Engl J Med 327 (19): 1342-9, 1992.
18. Cooper IA, Wolf MM, Robertson TI, et al.: Randomized comparison of MACOP-B with CHOP in patients with intermediate-grade non-Hodgkin's lymphoma. The Australian and New Zealand Lymphoma Group. J Clin Oncol 12 (4): 769-78, 1994.
19. O'Connell MJ, Harrington DP, Earle JD, et al.: Prospectively randomized clinical trial of three intensive chemotherapy regimens for the treatment of advanced unfavorable histology non-Hodgkin's lymphoma. J Clin Oncol 5 (9): 1329-39, 1987.
20. Morgner A, Miehlke S, Fischbach W, et al.: Complete remission of primary high-grade B-cell gastric lymphoma after cure of Helicobacter pylori infection. J Clin Oncol 19 (7): 2041-8, 2001.
21. Chen LT, Lin JT, Shyu RY, et al.: Prospective study of Helicobacter pylori eradication therapy in stage I(E) high-grade mucosa-associated lymphoid tissue lymphoma of the stomach. J Clin Oncol 19 (22): 4245-51, 2001.
22. Chen LT, Lin JT, Tai JJ, et al.: Long-term results of anti-Helicobacter pylori therapy in early-stage gastric high-grade transformed MALT lymphoma. J Natl Cancer Inst 97 (18): 1345-53, 2005.
23. Kuo SH, Yeh KH, Wu MS, et al.: Helicobacter pylori eradication therapy is effective in the treatment of early-stage H pylori-positive gastric diffuse large B-cell lymphomas. Blood 119 (21): 4838-44; quiz 5057, 2012.
24. Ziepert M, Hasenclever D, Kuhnt E, et al.: Standard International prognostic index remains a valid predictor of outcome for patients with aggressive CD20+ B-cell lymphoma in the rituximab era. J Clin Oncol 28 (14): 2373-80, 2010.
25. Cuccuini W, Briere J, Mounier N, et al.: MYC+ diffuse large B-cell lymphoma is not salvaged by classical R-ICE or R-DHAP followed by BEAM plus autologous stem cell transplantation. Blood 119 (20): 4619-24, 2012.
26. Johnson NA, Slack GW, Savage KJ, et al.: Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 30 (28): 3452-9, 2012.
27. Green TM, Young KH, Visco C, et al.: Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 30 (28): 3460-7, 2012.
28. Horn H, Ziepert M, Becher C, et al.: MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood 121 (12): 2253-63, 2013.
29. Canellos GP: CHOP may have been part of the beginning but certainly not the end: issues in risk-related therapy of large-cell lymphoma. J Clin Oncol 15 (5): 1713-6, 1997.
30. Rosenwald A, Wright G, Chan WC, et al.: The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346 (25): 1937-47, 2002.
31. Lossos IS, Czerwinski DK, Alizadeh AA, et al.: Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 350 (18): 1828-37, 2004.
32. Coiffier B, Altman A, Pui CH, et al.: Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J Clin Oncol 26 (16): 2767-78, 2008.
33. Cortes J, Moore JO, Maziarz RT, et al.: Control of plasma uric acid in adults at risk for tumor Lysis syndrome: efficacy and safety of rasburicase alone and rasburicase followed by allopurinol compared with allopurinol alone--results of a multicenter phase III study. J Clin Oncol 28 (27): 4207-13, 2010.
34. Glantz MJ, Cole BF, Recht L, et al.: High-dose intravenous methotrexate for patients with nonleukemic leptomeningeal cancer: is intrathecal chemotherapy necessary? J Clin Oncol 16 (4): 1561-7, 1998.
35. Bernstein SH, Unger JM, Leblanc M, et al.: Natural history of CNS relapse in patients with aggressive non-Hodgkin's lymphoma: a 20-year follow-up analysis of SWOG 8516 -- the Southwest Oncology Group. J Clin Oncol 27 (1): 114-9, 2009.
36. van Besien K, Ha CS, Murphy S, et al.: Risk factors, treatment, and outcome of central nervous system recurrence in adults with intermediate-grade and immunoblastic lymphoma. Blood 91 (4): 1178-84, 1998.
37. Haioun C, Lepage E, Gisselbrecht C, et al.: Survival benefit of high-dose therapy in poor-risk aggressive non-Hodgkin's lymphoma: final analysis of the prospective LNH87-2 protocol--a groupe d'Etude des lymphomes de l'Adulte study. J Clin Oncol 18 (16): 3025-30, 2000.
38. Haioun C, Lepage E, Gisselbrecht C, et al.: Benefit of autologous bone marrow transplantation over sequential chemotherapy in poor-risk aggressive non-Hodgkin's lymphoma: updated results of the prospective study LNH87-2. Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol 15 (3): 1131-7, 1997.
39. Santini G, Salvagno L, Leoni P, et al.: VACOP-B versus VACOP-B plus autologous bone marrow transplantation for advanced diffuse non-Hodgkin's lymphoma: results of a prospective randomized trial by the non-Hodgkin's Lymphoma Cooperative Study Group. J Clin Oncol 16 (8): 2796-802, 1998.
40. Gianni AM, Bregni M, Siena S, et al.: High-dose chemotherapy and autologous bone marrow transplantation compared with MACOP-B in aggressive B-cell lymphoma. N Engl J Med 336 (18): 1290-7, 1997.
41. Kluin-Nelemans HC, Zagonel V, Anastasopoulou A, et al.: Standard chemotherapy with or without high-dose chemotherapy for aggressive non-Hodgkin's lymphoma: randomized phase III EORTC study. J Natl Cancer Inst 93 (1): 22-30, 2001.
42. Gisselbrecht C, Lepage E, Molina T, et al.: Shortened first-line high-dose chemotherapy for patients with poor-prognosis aggressive lymphoma. J Clin Oncol 20 (10): 2472-9, 2002.
43. Martelli M, Gherlinzoni F, De Renzo A, et al.: Early autologous stem-cell transplantation versus conventional chemotherapy as front-line therapy in high-risk, aggressive non-Hodgkin's lymphoma: an Italian multicenter randomized trial. J Clin Oncol 21 (7): 1255-62, 2003.
44. Milpied N, Deconinck E, Gaillard F, et al.: Initial treatment of aggressive lymphoma with high-dose chemotherapy and autologous stem-cell support. N Engl J Med 350 (13): 1287-95, 2004.
45. Betticher DC, Martinelli G, Radford JA, et al.: Sequential high dose chemotherapy as initial treatment for aggressive sub-types of non-Hodgkin lymphoma: results of the international randomized phase III trial (MISTRAL). Ann Oncol 17 (10): 1546-52, 2006.
46. Shipp MA, Abeloff MD, Antman KH, et al.: International Consensus Conference on high-dose therapy with hematopoietic stem-cell transplantation in aggressive non-Hodgkin's lymphomas: report of the jury. Ann Oncol 10 (1): 13-9, 1999.

Treatment for Adult Lymphoblastic Lymphoma

Lymphoblastic lymphoma is a very aggressive form of non-Hodgkin lymphoma (NHL), which often occurs in young patients, but not exclusively. Lymphoblastic lymphoma is commonly associated with large mediastinal masses and has a high predilection for disseminating to bone marrow and the central nervous system (CNS). The treatment paradigms are based on trials for acute lymphoblastic leukemia (ALL) since lymphoblastic lymphoma and ALL are considered different manifestations of the same biologic disease. (Refer to the PDQ summary on Adult Acute Lymphoblastic Leukemia Treatment for more information.) Treatment is usually patterned after ALL. Intensive combination chemotherapy with CNS prophylaxis is the standard treatment of this aggressive histologic type of NHL. Radiation therapy is sometimes given to areas of bulky tumor masses. Since these forms of NHL tend to progress quickly, combination chemotherapy is instituted rapidly once the diagnosis has been confirmed.

The most important aspects of the pretreatment staging workup include careful review of the following pathological specimens:

  • Bone marrow aspirate.
  • Biopsy specimen.
  • Cerebrospinal fluid cytology.
  • Lymphocyte marker.

Standard Treatment Options for Adult Lymphoblastic Lymphoma

Standard Treatment Options for Adult Lymphoblastic Lymphoma include the following:

1.Intensive therapy.
2.Radiation therapy.

(Refer to the PDQ summary on Adult Acute Lymphoblastic Leukemia Treatment for more information.)

Intensive therapy

Standard treatment is intensive combination chemotherapy with CNS prophylaxis.

Radiation therapy

Radiation therapy is sometimes given to areas of bulky tumor masses.

Treatment Options Under Clinical Evaluation for Adult Lymphoblastic Lymphoma

New treatment approaches are being developed by the national cooperative groups. Other approaches include the use of bone marrow transplantation for consolidation. (Refer to the PDQ summary on Adult Acute Lymphoblastic Leukemia Treatment for more information.)

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with adult lymphoblastic lymphoma. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

Treatment for Diffuse, Small Noncleaved-Cell / Burkitt Lymphoma

Diffuse, small, noncleaved-cell/Burkitt lymphoma typically involves younger patients and represents the most common type of pediatric NHL.[1]

Standard Treatment Options for Diffuse, Small Noncleaved-Cell/Burkitt Lymphoma

Standard treatment options for diffuse, small, noncleaved-cell/Burkitt lymphoma include the following:

1.Aggressive multidrug regimens.
2.Central nervous system (CNS) prophylaxis.

Aggressive multidrug regimens

Standard treatment for diffuse, small, noncleaved-cell/Burkitt lymphoma is usually with aggressive multidrug regimens similar to those used for the advanced-stage aggressive lymphomas (such as diffuse large cell).[2,3,4] In some institutions, treatment includes the use of consolidative bone marrow transplantation.[5,6] Adverse prognostic factors include bulky abdominal disease and high serum lactate dehydrogenase.

Evidence (aggressive multidrug regimens):

  • An intensive clinical trial (CLB-9251 [NCT00002494]) used aggressive combination chemotherapy patterned after that used in childhood Burkitt lymphoma and has been very successful for adult patients.[7,8,9,10,11] More than 60% of advanced-stage patients were free of disease at 5 years.[7,8,9,10,11,12]

Central nervous system (CNS) prophylaxis

Patients with diffuse, small, noncleaved-cell/Burkitt lymphoma have a 20% to 30% lifetime risk of CNS involvement. CNS prophylaxis with methotrexate is recommended for all patients, usually given as four to six intrathecal injections.[13] (Refer to the PDQ summary on Adult Acute Lymphoblastic Leukemia Treatment for more information).

Evidence (CNS prophylaxis):

  • In a series of 41 patients treated with systemic and intrathecal chemotherapy, 44% of those who presented with CNS disease and 13% of those who relapsed with CNS involvement became long-term disease-free survivors.[14] CNS relapse patterns were similar whether or not patients received radiation therapy, but increased neurologic deficits were noted among those patients who received radiation therapy.

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with adult Burkitt lymphoma. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References:

1. Blum KA, Lozanski G, Byrd JC: Adult Burkitt leukemia and lymphoma. Blood 104 (10): 3009-20, 2004.
2. Longo DL, Duffey PL, Jaffe ES, et al.: Diffuse small noncleaved-cell, non-Burkitt's lymphoma in adults: a high-grade lymphoma responsive to ProMACE-based combination chemotherapy. J Clin Oncol 12 (10): 2153-9, 1994.
3. McMaster ML, Greer JP, Greco FA, et al.: Effective treatment of small-noncleaved-cell lymphoma with high-intensity, brief-duration chemotherapy. J Clin Oncol 9 (6): 941-6, 1991.
4. Thomas DA, Faderl S, O'Brien S, et al.: Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer 106 (7): 1569-80, 2006.
5. Freedman AS, Takvorian T, Anderson KC, et al.: Autologous bone marrow transplantation in B-cell non-Hodgkin's lymphoma: very low treatment-related mortality in 100 patients in sensitive relapse. J Clin Oncol 8 (5): 784-91, 1990.
6. Sweetenham JW, Pearce R, Philip T, et al.: High-dose therapy and autologous bone marrow transplantation for intermediate and high grade non-Hodgkin's lymphoma in patients aged 55 years and over: results from the European Group for Bone Marrow Transplantation. The EBMT Lymphoma Working Party. Bone Marrow Transplant 14 (6): 981-7, 1994.
7. Soussain C, Patte C, Ostronoff M, et al.: Small noncleaved cell lymphoma and leukemia in adults. A retrospective study of 65 adults treated with the LMB pediatric protocols. Blood 85 (3): 664-74, 1995.
8. Magrath I, Adde M, Shad A, et al.: Adults and children with small non-cleaved-cell lymphoma have a similar excellent outcome when treated with the same chemotherapy regimen. J Clin Oncol 14 (3): 925-34, 1996.
9. Adde M, Shad A, Venzon D, et al.: Additional chemotherapy agents improve treatment outcome for children and adults with advanced B-cell lymphomas. Semin Oncol 25 (2 Suppl 4): 33-9; discussion 45-8, 1998.
10. Hoelzer D, Ludwig WD, Thiel E, et al.: Improved outcome in adult B-cell acute lymphoblastic leukemia. Blood 87 (2): 495-508, 1996.
11. Lee EJ, Petroni GR, Schiffer CA, et al.: Brief-duration high-intensity chemotherapy for patients with small noncleaved-cell lymphoma or FAB L3 acute lymphocytic leukemia: results of cancer and leukemia group B study 9251. J Clin Oncol 19 (20): 4014-22, 2001.
12. Mead GM, Sydes MR, Walewski J, et al.: An international evaluation of CODOX-M and CODOX-M alternating with IVAC in adult Burkitt's lymphoma: results of United Kingdom Lymphoma Group LY06 study. Ann Oncol 13 (8): 1264-74, 2002.
13. Rizzieri DA, Johnson JL, Niedzwiecki D, et al.: Intensive chemotherapy with and without cranial radiation for Burkitt leukemia and lymphoma: final results of Cancer and Leukemia Group B Study 9251. Cancer 100 (7): 1438-48, 2004.
14. Magrath IT, Haddy TB, Adde MA: Treatment of patients with high grade non-Hodgkin's lymphomas and central nervous system involvement: is radiation an essential component of therapy? Leuk Lymphoma 21 (1-2): 99-105, 1996.

Treatment for Aggressive, Recurrent Adult NHL

Standard Treatment Options for Aggressive, Recurrent Adult NHL

Standard treatment options for aggressive, recurrent adult non-Hodgkin lymphoma (NHL) include the following:

1.Bone marrow or stem cell transplantation.
2.Re-treatment with standard agents.
3.Palliative radiation therapy.

Bone marrow or stem cell transplantation

Bone marrow transplantation (BMT) is the treatment of choice for patients whose lymphoma has relapsed.[1] Preliminary studies indicate that approximately 20% to 40% of patients will have a long-term disease-free status, but the precise percentage depends on patient selection and the specific treatment used. Preparative drug regimens have varied; some investigators also use total-body irradiation. Similar success has been achieved using autologous marrow, with or without marrow purging, and allogeneic marrow.[2,3,4,5,6]

Evidence (BMT):

1.In a prospective, randomized study, (EORTC-PARMA), 215 patients in first or second relapse of aggressive lymphoma, younger than 60 years, and with no bone marrow or central nervous system involvement, were given two cycles of intensive combination chemotherapy. The 109 patients who responded were randomly assigned to receive four more cycles of chemotherapy and involved-field radiation therapy (IF-XRT) versus autologous BMT followed by IF-XRT. With a 5-year median follow-up, the event-free survival (EFS) was significantly improved with transplantation (46% vs. 12%). Overall survival (OS) was also significantly better with transplantation (53% vs. 32%).[7][Level of evidence: 1iiA] Salvage BMT was unsuccessful for patients on the nontransplant arm whose disease relapsed.

In general, patients who responded to initial therapy and who responded to conventional therapy for relapse prior to the BMT have had the best results.[8]

2.In a prospective trial, patients who relapsed late (>12 months after diagnosis) had better OS than patients who relapsed earlier (8-year survival was 29% vs. 13%, P = .001).[9][Level of evidence: 3iiiA]

Peripheral stem cell transplantation (SCT) has yielded results equivalent to standard autologous transplantation.[10,11] Even patients who never experienced complete remission with conventional chemotherapy may have prolonged progression-free survival (31% at 5 years) after high-dose chemotherapy and hematopoietic SCT if they retain chemosensitivity to reinduction therapy.[12][Level of evidence: 3iiiDiii] Some patients who relapse after a previous autologous transplantation can have durable remissions after myeloablative or nonmyeloablative allogeneic SCT.[13,14]; [15][Level of evidence: 3iiiDiv]

Evidence (peripheral SCT):

  • In a randomized prospective trial, 396 patients with diffuse large B-cell lymphoma in first relapse or who were refractory to first-line therapy received either R-ICE (rituximab, ifosfamide, etoposide, and carboplatin) or R-DHAP (rituximab, dexamethasone, high-dose cytarabine, and cisplatin) followed by autologous SCT; there was no difference in 3-year EFS or OS.[16][Level of evidence: 1iiA]

Re-treatment with standard agents

In general, re-treatment with standard agents rarely produces a cure in patients whose lymphomas relapse.[17] Several salvage chemotherapy regimens are available.[18,19,20]

  • Rituximab alone can induce responses in 33% of patients with relapsing aggressive lymphoma of appropriate phenotype (CD20-positive).[21]; [22][Level of evidence: 3iiiDiv]
  • Radiolabeled anti-CD20 monoclonal antibodies, such as iodine-131 tositumomab and yttrium-90 ibritumomab, induce 60% to 80% response rates in patients with relapsed or refractory B-cell lymphoma.[23,24]; [25][Level of evidence: 3iiiDiv]
  • Denileukin diftitox, a fusion protein combining diphtheria toxin and interleukin-2, resulted in a 25% objective response rate in 45 heavily pretreated patients, as evidenced in E-1497 (NCT00003615), for example, with aggressive B-cell NHL (CD25, i.e., interleukin-2 receptor, expression was not correlated with response).[26][Level of evidence: 3iiiDiv]
  • In two phase II trials, 49 patients showed a 19% to 35% overall response rate to lenalidomide with or without rituximab.[27,28][Level of evidence: 3iiiDiv]

Durable responses to radiolabeled monoclonal antibodies have been reported for transformed low-grade B-cell lymphoma.[23,24] Not infrequently, an aggressive lymphoma may relapse as a small cell (indolent) lymphoma. Such a situation occurs with indolent lymphoma in the bone marrow and aggressive lymphoma in a nodal site. Patients may present in such a manner, and chemotherapy might successfully eradicate the peripheral disease while failing to eliminate the small cell component from the bone marrow. The clinical significance and natural history of this pattern of disease is not well defined.

Palliative radiation therapy

In general, patients with aggressive lymphoma who relapse with indolent histology will benefit from palliative therapy.[29] Palliation may be achieved with very low-dose (4 Gy) IF-XRT for patients with indolent and aggressive relapsed disease.[30]

Treatment Options Under Clinical Evaluation for Aggressive, Recurrent Adult NHL

Treatment options under clinical evaluation include the following:

  • SCT. The indolent lymphomas may relapse with an aggressive histology (i.e., histologic conversion). The durability of the second remission may be short, and clinical trials, such as autologous or allogeneic peripheral SCT, should be considered.[31,32,33,34]

Current Clinical Trials

Check for U.S. clinical trials from NCI's list of cancer clinical trials that are now accepting patients with aggressive, recurrent adult non-Hodgkin lymphoma. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References:

1. Shipp MA, Abeloff MD, Antman KH, et al.: International Consensus Conference on high-dose therapy with hematopoietic stem-cell transplantation in aggressive non-Hodgkin's lymphomas: report of the jury. Ann Oncol 10 (1): 13-9, 1999.
2. Freedman AS, Takvorian T, Anderson KC, et al.: Autologous bone marrow transplantation in B-cell non-Hodgkin's lymphoma: very low treatment-related mortality in 100 patients in sensitive relapse. J Clin Oncol 8 (5): 784-91, 1990.
3. Phillips GL, Fay JW, Herzig RH, et al.: The treatment of progressive non-Hodgkin's lymphoma with intensive chemoradiotherapy and autologous marrow transplantation. Blood 75 (4): 831-8, 1990.
4. Chopra R, Goldstone AH, Pearce R, et al.: Autologous versus allogeneic bone marrow transplantation for non-Hodgkin's lymphoma: a case-controlled analysis of the European Bone Marrow Transplant Group Registry data. J Clin Oncol 10 (11): 1690-5, 1992.
5. Ratanatharathorn V, Uberti J, Karanes C, et al.: Prospective comparative trial of autologous versus allogeneic bone marrow transplantation in patients with non-Hodgkin's lymphoma. Blood 84 (4): 1050-5, 1994.
6. Mills W, Chopra R, McMillan A, et al.: BEAM chemotherapy and autologous bone marrow transplantation for patients with relapsed or refractory non-Hodgkin's lymphoma. J Clin Oncol 13 (3): 588-95, 1995.
7. Philip T, Guglielmi C, Hagenbeek A, et al.: Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin's lymphoma. N Engl J Med 333 (23): 1540-5, 1995.
8. Vellenga E, van Putten WL, van 't Veer MB, et al.: Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20+ NHL: a prospective randomized HOVON trial. Blood 111 (2): 537-43, 2008.
9. Guglielmi C, Gomez F, Philip T, et al.: Time to relapse has prognostic value in patients with aggressive lymphoma enrolled onto the Parma trial. J Clin Oncol 16 (10): 3264-9, 1998.
10. Vose JM, Anderson JR, Kessinger A, et al.: High-dose chemotherapy and autologous hematopoietic stem-cell transplantation for aggressive non-Hodgkin's lymphoma. J Clin Oncol 11 (10): 1846-51, 1993.
11. Liberti G, Pearce R, Taghipour G, et al.: Comparison of peripheral blood stem-cell and autologous bone marrow transplantation for lymphoma patients: a case-controlled analysis of the EBMT Registry data. Lymphoma Working Party of the EBMT. Ann Oncol 5 (Suppl 2): 151-3, 1994.
12. Vose JM, Zhang MJ, Rowlings PA, et al.: Autologous transplantation for diffuse aggressive non-Hodgkin's lymphoma in patients never achieving remission: a report from the Autologous Blood and Marrow Transplant Registry. J Clin Oncol 19 (2): 406-13, 2001.
13. van Kampen RJ, Canals C, Schouten HC, et al.: Allogeneic stem-cell transplantation as salvage therapy for patients with diffuse large B-cell non-Hodgkin's lymphoma relapsing after an autologous stem-cell transplantation: an analysis of the European Group for Blood and Marrow Transplantation Registry. J Clin Oncol 29 (10): 1342-8, 2011.
14. Freytes CO, Loberiza FR, Rizzo JD, et al.: Myeloablative allogeneic hematopoietic stem cell transplantation in patients who experience relapse after autologous stem cell transplantation for lymphoma: a report of the International Bone Marrow Transplant Registry. Blood 104 (12): 3797-803, 2004.
15. Rezvani AR, Norasetthada L, Gooley T, et al.: Non-myeloablative allogeneic haematopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: a multicentre experience. Br J Haematol 143 (3): 395-403, 2008.
16. Gisselbrecht C, Glass B, Mounier N, et al.: Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol 28 (27): 4184-90, 2010.
17. Larouche JF, Berger F, Chassagne-Clément C, et al.: Lymphoma recurrence 5 years or later following diffuse large B-cell lymphoma: clinical characteristics and outcome. J Clin Oncol 28 (12): 2094-100, 2010.
18. Rodriguez MA, Cabanillas FC, Velasquez W, et al.: Results of a salvage treatment program for relapsing lymphoma: MINE consolidated with ESHAP. J Clin Oncol 13 (7): 1734-41, 1995.
19. Rizzieri DA, Sand GJ, McGaughey D, et al.: Low-dose weekly paclitaxel for recurrent or refractory aggressive non-Hodgkin lymphoma. Cancer 100 (11): 2408-14, 2004.
20. Kewalramani T, Zelenetz AD, Nimer SD, et al.: Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood 103 (10): 3684-8, 2004.
21. Coiffier B, Haioun C, Ketterer N, et al.: Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood 92 (6): 1927-32, 1998.
22. Tobinai K, Igarashi T, Itoh K, et al.: Japanese multicenter phase II and pharmacokinetic study of rituximab in relapsed or refractory patients with aggressive B-cell lymphoma. Ann Oncol 15 (5): 821-30, 2004.
23. Fisher RI, Kaminski MS, Wahl RL, et al.: Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin's lymphomas. J Clin Oncol 23 (30): 7565-73, 2005.
24. Witzig TE, Gordon LI, Cabanillas F, et al.: Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J Clin Oncol 20 (10): 2453-63, 2002.
25. Wiseman GA, Gordon LI, Multani PS, et al.: Ibritumomab tiuxetan radioimmunotherapy for patients with relapsed or refractory non-Hodgkin lymphoma and mild thrombocytopenia: a phase II multicenter trial. Blood 99 (12): 4336-42, 2002.
26. Dang NH, Hagemeister FB, Pro B, et al.: Phase II study of denileukin diftitox for relapsed/refractory B-Cell non-Hodgkin's lymphoma. J Clin Oncol 22 (20): 4095-102, 2004.
27. Zinzani PL, Pellegrini C, Gandolfi L, et al.: Combination of lenalidomide and rituximab in elderly patients with relapsed or refractory diffuse large B-cell lymphoma: a phase 2 trial. Clin Lymphoma Myeloma Leuk 11 (6): 462-6, 2011.
28. Wiernik PH, Lossos IS, Tuscano JM, et al.: Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin's lymphoma. J Clin Oncol 26 (30): 4952-7, 2008.
29. Lee AY, Connors JM, Klimo P, et al.: Late relapse in patients with diffuse large-cell lymphoma treated with MACOP-B. J Clin Oncol 15 (5): 1745-53, 1997.
30. Haas RL, Poortmans P, de Jong D, et al.: Effective palliation by low dose local radiotherapy for recurrent and/or chemotherapy refractory non-follicular lymphoma patients. Eur J Cancer 41 (12): 1724-30, 2005.
31. Yuen AR, Kamel OW, Halpern J, et al.: Long-term survival after histologic transformation of low-grade follicular lymphoma. J Clin Oncol 13 (7): 1726-33, 1995.
32. Bastion Y, Sebban C, Berger F, et al.: Incidence, predictive factors, and outcome of lymphoma transformation in follicular lymphoma patients. J Clin Oncol 15 (4): 1587-94, 1997.
33. Williams CD, Harrison CN, Lister TA, et al.: High-dose therapy and autologous stem-cell support for chemosensitive transformed low-grade follicular non-Hodgkin's lymphoma: a case-matched study from the European Bone Marrow Transplant Registry. J Clin Oncol 19 (3): 727-35, 2001.
34. Tsimberidou AM, O'Brien S, Khouri I, et al.: Clinical outcomes and prognostic factors in patients with Richter's syndrome treated with chemotherapy or chemoimmunotherapy with or without stem-cell transplantation. J Clin Oncol 24 (15): 2343-51, 2006.

Non-Hodgkin Lymphoma During Pregnancy

General Information About NHL During Pregnancy

Non-Hodgkin lymphomas (NHLs) occur more frequently than Hodgkin lymphoma in an older population. This age difference may account for fewer reports of NHL in pregnant patients.[1]

Stage Information for NHL During Pregnancy

To avoid exposure to ionizing radiation, magnetic resonance imaging is the preferred tool for staging evaluation.[2] (Refer to the Stage Information for Adult NHL section of this summary for more information.)

Treatment Option Overview for NHL During Pregnancy

Table 5. Treatment Options for NHL During Pregnancy

Stage Standard Treatment Options
Indolent NHL During Pregnancy Delay treatment until after delivery
Aggressive NHL During Pregnancy Immediate therapy
Early delivery, when feasible
Termination of pregnancy

Indolent NHL During Pregnancy

Treatment may be delayed for those women with an indolent NHL.

Aggressive NHL During Pregnancy

Immediate therapy

According to anecdotal case series, most NHLs in pregnant patients are aggressive, and delay of therapy until after delivery appears to have poor outcomes.[1,3,4,5] Consequently, some investigators favor immediate therapy, even during pregnancy.[5]

Early delivery when feasible

For some women, early delivery, when feasible, may minimize or avoid exposure to chemotherapy or radiation therapy.

Termination of pregnancy

Termination of pregnancy in the first trimester may be an option that allows immediate therapy for women with aggressive NHL.

Evidence (treatment effect on children exposed in utero):

  • With follow-up ranging from several months to 11 years, children who were exposed to high-dose doxorubicin-containing combination chemotherapy in utero (especially during the second and third trimester) have been found to be normal.[5,6,7,8] For most of the chemotherapeutic agents used for the treatment of NHL, there are no data regarding long-term effects on children exposed in utero.

References:

1. Ward FT, Weiss RB: Lymphoma and pregnancy. Semin Oncol 16 (5): 397-409, 1989.
2. Nicklas AH, Baker ME: Imaging strategies in the pregnant cancer patient. Semin Oncol 27 (6): 623-32, 2000.
3. Steiner-Salz D, Yahalom J, Samuelov A, et al.: Non-Hodgkin's lymphoma associated with pregnancy. A report of six cases, with a review of the literature. Cancer 56 (8): 2087-91, 1985.
4. Spitzer M, Citron M, Ilardi CF, et al.: Non-Hodgkin's lymphoma during pregnancy. Gynecol Oncol 43 (3): 309-12, 1991.
5. Gelb AB, van de Rijn M, Warnke RA, et al.: Pregnancy-associated lymphomas. A clinicopathologic study. Cancer 78 (2): 304-10, 1996.
6. Avilés A, Díaz-Maqueo JC, Torras V, et al.: Non-Hodgkin's lymphomas and pregnancy: presentation of 16 cases. Gynecol Oncol 37 (3): 335-7, 1990.
7. Moore DT, Taslimi MM: Multi-agent chemotherapy in a case of non-Hodgkin's lymphoma in second trimester of pregnancy. J Tenn Med Assoc 84 (9): 435-6, 1991.
8. Nantel S, Parboosingh J, Poon MC: Treatment of an aggressive non-Hodgkin's lymphoma during pregnancy with MACOP-B chemotherapy. Med Pediatr Oncol 18 (2): 143-5, 1990.

Changes to This Summary (08 / 29 / 2013)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Aggressive Non-Hodgkin Lymphoma

An editorial change was made to this section.

This summary is written and maintained by the PDQ Adult Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ NCI's Comprehensive Cancer Database pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of adult non-Hodgkin lymphoma. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Adult Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewers for Adult Non-Hodgkin Lymphoma Treatment are:

  • Mark J. Levis, MD, PhD (Johns Hopkins University)
  • Eric J. Seifter, MD (Johns Hopkins University)

Any comments or questions about the summary content should be submitted to Cancer.gov through the Web site's Contact Form. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Adult Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."

The preferred citation for this PDQ summary is:

National Cancer Institute: PDQ® Adult Non-Hodgkin Lymphoma Treatment. Bethesda, MD: National Cancer Institute. Date last modified <MM/DD/YYYY>. Available at: http://www.cancer.gov/cancertopics/pdq/treatment/adult-non-hodgkins/HealthProfessional. Accessed <MM/DD/YYYY>.

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

Based on the strength of the available evidence, treatment options may be described as either "standard" or "under clinical evaluation." These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Coping with Cancer: Financial, Insurance, and Legal Information page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov Web site can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the Web site's Contact Form.

Get More Information From NCI

Call 1-800-4-CANCER

For more information, U.S. residents may call the National Cancer Institute's (NCI's) Cancer Information Service toll-free at 1-800-4-CANCER (1-800-422-6237) Monday through Friday from 8:00 a.m. to 8:00 p.m., Eastern Time. A trained Cancer Information Specialist is available to answer your questions.

Chat online

The NCI's LiveHelp® online chat service provides Internet users with the ability to chat online with an Information Specialist. The service is available from 8:00 a.m. to 11:00 p.m. Eastern time, Monday through Friday. Information Specialists can help Internet users find information on NCI Web sites and answer questions about cancer.

Write to us

For more information from the NCI, please write to this address:

NCI Public Inquiries Office
9609 Medical Center Dr.
Room 2E532 MSC 9760
Bethesda, MD 20892-9760

Search the NCI Web site

The NCI Web site provides online access to information on cancer, clinical trials, and other Web sites and organizations that offer support and resources for cancer patients and their families. For a quick search, use the search box in the upper right corner of each Web page. The results for a wide range of search terms will include a list of "Best Bets," editorially chosen Web pages that are most closely related to the search term entered.

There are also many other places to get materials and information about cancer treatment and services. Hospitals in your area may have information about local and regional agencies that have information on finances, getting to and from treatment, receiving care at home, and dealing with problems related to cancer treatment.

Find Publications

The NCI has booklets and other materials for patients, health professionals, and the public. These publications discuss types of cancer, methods of cancer treatment, coping with cancer, and clinical trials. Some publications provide information on tests for cancer, cancer causes and prevention, cancer statistics, and NCI research activities. NCI materials on these and other topics may be ordered online or printed directly from the NCI Publications Locator. These materials can also be ordered by telephone from the Cancer Information Service toll-free at 1-800-4-CANCER (1-800-422-6237).

Last Revised: 2013-08-29

This information does not replace the advice of a doctor. Healthwise, Incorporated disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the Terms of Use. How this information was developed to help you make better health decisions.

Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Healthwise, Incorporated.